Laser & Optoelectronics Progress, Volume. 57, Issue 4, 041021(2020)

Backbone Network for Object Detection Task

Yalin Song* and Yanwei Pang
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    References(28)

    [1] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [5] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 23-28, 2014, Columbus, Ohio. New York: IEEE, 580-587(2014).

    [7] Girshick R. Fast R-CNN. [C]∥Proceedings of the IEEE International Conference on Computer Vision(ICCV), December 11-18, 2015, Santiago, Chile. New York: IEEE, 1440-1448(2015).

    [8] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks. [C]∥Advances in Neural Information Processing Systems, December 7-12, 2015, Montreal, Quebec, Canada. Canada: NIPS, 91-99(2015).

    [10] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 26-July 1, 2016, Las Vegas, Nevada. New York: IEEE, 779-788(2016).

    [11] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. ∥Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science. Cham: Springer, 9905, 21-37(2016).

    [14] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. [C]∥Advances in Neural Information Processing Systems, December 3-6, 2012, Lake Tahoe, Nevada, United States. Canada: NIPS, 1097-1105(2012).

    [15] Simonyan K. San Diego, CA, USA[C]. Zisserman A. Very deep convolutional networks for large-scale image recognition∥Proceedings of the International Conference on Learning Representations, May 7-9(2015).

    [16] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), June 26-July 1, 2016, Las Vegas, Nevada. New York: IEEE, 770-778(2016).

    [17] Huang G. Liu Z, van der Maaten L, et al. Densely connected convolutional networks. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), July 21-26, 2017, Honolulu, Hawaii. New York: IEEE, 4700-4708(2017).

    [18] He K M, Girshick R, Dollár P. Rethinking ImageNet pre-training. [C]∥Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 27-November 2, 2019, Seoul, Korea. New York: IEEE, 4918-4927(2019).

    [19] Shen Z Q, Liu Z, Li J G et al. DSOD: learning deeply supervised object detectors from scratch. [C]∥Proceedings of the IEEE International Conference on Computer Vision(ICCV), October 22-29, 2017, Venice, Italy. New York: IEEE, 1919-1927(2017).

    [20] Zhu R, Zhang S F, Wang X B et al. ScratchDet: training single-shot object detectors from scratch. [C]∥Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recongition (CVPR), June 16-20, 2019, Long Beach, CA, USA. New York: IEEE, 2268-2277(2019).

    [22] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]∥Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, May 13-15, 2010, Sardinia, 249-256(2010).

    [23] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. [C]∥Proceedings of the International Conference on Machine Learning (ICML), July 6-11, 2015, Lille, France. New York: ACM, 448-456(2015).

    [24] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]∥Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, April 11-13, 2011, Fort Lauderdale, USA., 315-323(2011).

    [25] Liu S T, Huang D, Wang Y H. Receptive field block net for accurate and fast object detection. [C]∥Proceedings of the European Conference on Computer Vision(ECCV), September 8-14, 2018, Munich, Germany. New York: IEEE, 385-400(2018).

    [26] Redmon J, Farhadi A. YOLO9000: better, faster, stronger. [C]∥Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 6517-6525(2017).

    [27] Fu C Y, Liu W, Ranga A et al. -01-23)[2019-06-09]. http:∥arxiv., org/abs/1701, 06659(2017).

    [28] Dai J F, Li Y, He K M et al. R-FCN: object detection via region-based fully convolutional networks. [C]∥Advances in Neural Information Processing Systems, December 5-10, 2016, Barcelona, Spain. Canada: NIPS, 379-387(2016).

    Tools

    Get Citation

    Copy Citation Text

    Yalin Song, Yanwei Pang. Backbone Network for Object Detection Task[J]. Laser & Optoelectronics Progress, 2020, 57(4): 041021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jun. 10, 2019

    Accepted: Jul. 22, 2019

    Published Online: Feb. 20, 2020

    The Author Email: Song Yalin (songyalin@tju.edu.cn)

    DOI:10.3788/LOP57.041021

    Topics