OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 19, Issue 6, 97(2021)
Research Status and Development of Mobile Atomic Gravimeter
[4] [4] Gillot P, Francis O, Landragin A, et al. Stability comparison of two absolute gravimeters: Optical versus atomic interferometers[J]. Metrologia, 2014, 51(5): 9-11.
[5] [5] Freier C, Hauth M, Schkolnik V, et al. Mobile quantum gravity sensor with unprecedented stability[J]. Journal of Physics Conference Series, 2015, 723(1): 1-6.
[6] [6] Xuejian W, Fei Z, Jordan D, et al. Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap[J]. Optica, 2017, 4(12): 1545.
[7] [7] Qin Luo, Heng Zhang, Ke Zhang, et al. A compact laser system for a portable atom interferometry gravimeter[J].Review of Scientific Instruments, 2019, 90: 043104.
[8] [8] Kasevieh MA, Chu S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer[J]. Applied Physics B, 1992, 54(5): 321-332.
[9] [9] Sugarhaker A. Atom interferometry in a 10 m fountain[D]. San Francisco: Stanford University, 2014.
[11] [11] Bodart O, Merlet S, Malassi N, et al. A cold atom pyramidal gravimeter with a single laser beam[J]. Applied Physics Letters, 2010, 96(13): 134101.
[12] [12] MeGuinness H J, Rakholia A V, Biedermann G W. High data-rate atom interferometer for measuring acceleration[J]. Applied Physics Letters, 2012, 100(1): 011106.
[13] [13] Jekeli C. Navigation error analysis of atom interferometer inertial sensor [J]. Navigation, 2005, 52(1) : 1-14.
[14] [14] Mahadeswaraswamy C. Atom interferometric gravity gradiometer: Disturbance compensation and mobile gradiometry[D]. San Francisco: Stanford University, 2009.
[15] [15] Takase K. Precision rotation rate measurements with a mobile atom interferometer[D]. San Francisco: Stanford University, 2008.
[16] [16] Freier C, Hauth M, Schkolnik V, et al. Mobile quantum gravity sensor with unprecedented stability[J]. Journal of Physics: Conference Series, 2016, 723: 012050.
[17] [17] Hauth M, Freier C, Schkolnik V, et al. First gravity measurements using the mobile atom interferometer GAIN[J]. Applied Physics B, 2013, 113: 49.
[18] [18] Ménoret V, Vermeulen P, Le Moigne N, et al. Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter[J]. Sci. Rep. , 2018, (8): 12300.
[19] [19] Wu X, Pagel Z, Malek B S, et al. Gravity surveys using a mobile atom interferometer[J]. Science Advances, 2019, 5(9): 0800.
[21] [21] Geiger R, Ménoret V, Stern G, et al. Detecting inertial effects with airborne matter-wave interferometry[J]. Nature Communications, 2011, (2): 474.
[22] [22] Bidel Y, Zahzam N, Bresson A, et al. Absolute airborne gravimetry with a cold atom sensor[J]. Journal of Geodesy, 2020, 94(2): 20.1-20.9 .
[23] [23] Yannick Bidel. Gravimètre à atomes froids embarquable. Sciences de l’ingénieur [R]. Paris: University of Paris-Saclay, 2020.
[24] [24] Bidel Y, Carraz 0, Charrière R, et al. Compact cold atom gravimeter for field applications[J]. Applied Physics Letters, 2013, 102(14) : 144107.
[25] [25] Bidel Y, Zahzam N, Blanchard C, et al. Absolute marine gravimetry with matter-wave interferometry [J]. Nature Communications, 2018, (9): 627.
[27] [27] Hu Z K, Sun B L, Duan X C, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 2013, 88(4): 043610.
[28] [28] Huang P W, Tang B, Chen X, et al. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 international comparison of absolute gravimeters[J]. Metrologia, 2019, 56(4): 045012.
[30] [30] Jin-Bao Long, Sheng-Jun, et al. Magnetic-enhanced modulation transfer spectroscopy and laser locking for 87Rb repump transition[J]. Optics Express, 2018, 26(21): 27773
Get Citation
Copy Citation Text
GUO Jie, PAN De-bin. Research Status and Development of Mobile Atomic Gravimeter[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2021, 19(6): 97
Category:
Received: Dec. 25, 2020
Accepted: --
Published Online: Feb. 28, 2022
The Author Email:
CSTR:32186.14.