Journal of Qufu Normal University, Volume. 51, Issue 3, 31(2025)
Group finite-time consensus for networked robot systems
[1] [1] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533.
[2] [2] WEI R, BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies [J]. IEEE Transactions on Automatic Control, 2005, 50(5):655-661.
[3] [3] BELYKH V N, OSIPOV G V, PETROV V S, et al. Synchronization in oscillatory networks[J]. Chaos, 2008, 18(3):37106.
[4] [4] CAO J D, LI L L. Cluster synchronization in an array of hybrid coupled neural networks with delay [J]. Neural Networks, 2009, 22(4):335-342.
[5] [5] YU J Y, SHI Y. Scaled group consensus in multiagent systems with first/second-order continuous dynamics[J]. IEEE Transactions on Cybernetics, 2017, 48(4):2259-2271.
[6] [6] ALTAFINI C. Consensus problems on networks with antagonistic interactions[J]. IEEE Transactions on Automatic Control, 2013, 58(4):935-946.
[7] [7] LIU J, ZHOU J. Distributed impulsive group consensus in second-order multi-agent systems under directed topology[J]. International Journal of Control, 2015, 88(5):910-919.
[8] [8] LIU J, JI J C, ZHOU J, et al. Adaptive group consensus in uncertain networked Euler-Lagrange systems under directed topology[J]. Nonlinear Dynamics, 2015, 82(3):1145-1157.
[9] [9] ROY S, ROY S B, et al. Adaptive-robust control of Euler-Lagrange systems with linearly parametrizable uncertainty bound[J]. IEEE Transactions on Control Systems Technology, 2018, 26(5):1842-1850.
[10] [10] LU M B, LIU L. Leader-following consensus of multiple uncertain Euler-Lagrange systems with unknown dynamic leader [J]. IEEE Transactions on Automatic Control, 2019, 64(10):4867.
[11] [11] YU J W, JI J C, MIAO Z H, et al. Neural network-based region reaching formation control for multi-robot systems in obstacle environment[J]. Neurocomputing, 2019, 333:11-21.
[12] [12] GE M F, LIU Z W, WEN G, et al. Hierarchical controller-estimator for coordination of networked Euler-Lagrange systems[J]. IEEE Transactions on Cybernetics, 2020, 50(6):2450-2461.
[13] [13] ZHOU P, CHEN B M. Formation-containment control of Euler-Lagrange systems of leaders with bounded unknown inputs [J]. IEEE Transactions on Cybernetics, 2022, 52(7):6342-6353.
[14] [14] FAN Y, JIN Z, GUO B, et al. Finite-time consensus of networked Euler-Lagrange systems via STA-based output feedback [J]. International Journal of Control, Automation and Systems, 2022, 20(9):2993-3005.
[15] [15] ZHAO Y, LIU Y, WEN G, et al. Distributed finite-time tracking of second-order multi-agent systems: An edgebased approach [J]. IET Control Theory & Applications, 2018, 12(1):149-154.
[16] [16] DONG Y, CHEN Z. Fixed-time synchronization of networked uncertain Euler-Lagrange systems [J]. Automatica, 2022, 146:110571.
[17] [17] KHALIL H. Nonlinear Systems[M]. 3rd ed. Upper Saddle River: Prentice Hall, 2002.
[18] [18] HARDY G H, LITTLEWOOD J E, PLYA G. Inequalities(Cambridge Mathematical Library)[M]. Cambridge: Cambridge University Press, 1934.
[19] [19] SONTAG E D. Input to State Stability: Basic Concepts and Results[M]. Heidelberg: Springer, 2008.
Get Citation
Copy Citation Text
MA Xinru, XIE Yonghao, WANG Zhaoyan, MA Xiaocui, LI Hengyu, LIU Jun. Group finite-time consensus for networked robot systems[J]. Journal of Qufu Normal University, 2025, 51(3): 31
Received: Apr. 25, 2023
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: LIU Jun (sdwslj@163.com)