Journal of the Chinese Ceramic Society, Volume. 53, Issue 5, 1037(2025)

Microbially Induced Calcite Precipitation in Tailings Sand Using In-situ Stimulation of Urease-Producing Microorganisms

LAI Yongming1 and KONG Qiuping2
Author Affiliations
  • 1College of Resource Engineering, Longyan University, Longyan 364012, Fujian, China
  • 2Fujian Yongqiang Geotechnical Co., Ltd., Longyan 364000, Fujian, China
  • show less
    References(45)

    [1] [1] DEJONG J T, FRITZGES M B, NSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. J Geotech Geoenviron Eng, 2006, 132(11): 1381-1392.

    [2] [2] DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges[M]//LALOUI L, ed. Bio- and Chemo-Mechanical Processes in Geotechnical Engineering. S.l.: ICE Publishing, 2014: 143-157.

    [3] [3] ONAL OKYAY T, FRIGI RODRIGUES D. High throughput colorimetric assay for rapid urease activity quantification[J]. J Microbiol Methods, 2013, 95(3): 324-326.

    [5] [5] CHENG L, SHAHIN M A, CHU J. Soil bio-cementation using a new one-phase low-pH injection method[J]. Acta Geotech, 2019, 14(3): 615-626.

    [6] [6] GOMEZ M G, GRADDY C M R, DEJONG J T, et al. Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths[J]. J Geotech Geoenviron Eng, 2018, 144(1): 04017098.

    [7] [7] GAT D, RONEN Z, TSESARSKY M. Soil bacteria population dynamics following stimulation for ureolytic microbial-induced CaCO3 precipitation[J]. Environ Sci Technol, 2016, 50(2): 616-624.

    [8] [8] GOMEZ M G, GRADDY C M R, DEJONG J T, et al. Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms[J]. Sci Rep, 2019, 9(1): 11517.

    [9] [9] PAKBAZ M S, GHEZELBASH G R, AFZAL A. Sugarcane Molasses: A Cheap Carbon Source for Calcite Production in Different Class of Soils using Stimulation of Indigenous Urease-producing Bacteria[J]. Geomicrobiol J, 2020, 37(3): 213-229.

    [10] [10] WANG Y J, HAN X L, JIANG N J, et al. The effect of enrichment media on the stimulation of native ureolytic bacteria in calcareous sand[J]. Int J Environ Sci Technol, 2020, 17(3): 1795-1808.

    [11] [11] LAI Y M, YU J, LIU S Y, et al. Experimental study to improve the mechanical properties of iron tailings sand by using MICP at low pH[J]. Constr Build Mater, 2021, 273: 121729.

    [12] [12] Chen X H, Guo H X, Cheng X H. Experimental study of the improvement of the properties of the tailing by biomaineralization[J]. Indust Constr, 2016, 46(6): 94-98.

    [16] [16] DE MUYNCK W, DEBROUWER D, DE BELIE N, et al. Bacterial carbonate precipitation improves the durability of cementitious materials[J]. Cem Concr Res, 2008, 38(7): 1005-1014.

    [17] [17] GERLACH G F, CLEGG S, NICHOLS W A. Characterization of the genes encoding urease activity of Klebsiella pneumoniae[J]. FEMS Microbiol Lett, 1988, 50(2/3): 131-135.

    [18] [18] PENG W H, LI X M, SONG J X, et al. Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides[J]. Chemosphere, 2018, 197: 33-41.

    [19] [19] SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedurehttp://www.epa.gov/hw-sw846/sw-846-test-method-1311-toxicity-characteristic-leaching-procedure

    [20] [20] NEMATI K, ABU BAKAR N K, ABAS M R, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. J Hazard Mater, 2011, 192(1): 402-410.

    [21] [21] CHENG Y J, TANG C S, PAN X H, et al. Application of microbial induced carbonate precipitation for loess surface erosion control[J]. Eng Geol, 2021, 294: 106387.

    [22] [22] KUNST F, RAPOPORT G. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis[J]. J Bacteriol, 1995, 177(9): 2403-2407.

    [23] [23] LIU S Y, DONG B W, YU J, et al. Evaluation of biostimulation efficacy on the reinforcement of calcareous sand[J]. J Test Eval, 2021, 49(6): 4181-4200.

    [24] [24] DAGLIYA M, SATYAM N, SHARMA M, et al. Experimental study on mitigating wind erosion of calcareous desert sand using spray method for microbially induced calcium carbonate precipitation[J]. J Rock Mech Geotech Eng, 2022, 14(5): 1556-1567.

    [25] [25] XUE Z F, CHENG W C, RAHMAN M M, et al. Immobilization of Pb(II) by Bacillus megaterium-based microbial-induced phosphate precipitation (MIPP) considering bacterial phosphorolysis ability and Ca-mediated alleviation of lead toxicity[J]. Environ Pollut, 2024, 355: 124229.

    [26] [26] XUE Z F, CHENG W C, WANG L, et al. Immobilizing lead in aqueous solution and loess soil using microbially induced carbonate/phosphate precipitation (MICP/MIPP) under harsh pH environments[J]. J Hazard Mater, 2024, 480: 135884.

    [27] [27] CHEN X Y, ACHAL V. Biostimulation of carbonate precipitation process in soil for copper immobilization[J]. J Hazard Mater, 2019, 368: 705-713.

    [28] [28] OH Y S, ROH D H. Phenylobacterium muchangponense sp. nov., isolated from beach soil, and emended description of the genus Phenylobacterium[J]. Int J Syst Evol Microbiol, 2012, 62(P4): 977-983.

    [29] [29] CHEN T L, LEE Y T, KUO S C, et al. Rapid identification of Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii with a multiplex PCR assay[J]. J Med Microbiol, 2014, 63(P9): 1154-1159.

    [30] [30] LU H S, SATO Y, FUJIMURA R, et al. Limnobacter litoralis sp. nov., a thiosulfate-oxidizing, heterotrophic bacterium isolated from a volcanic deposit, and emended description of the genus Limnobacter[J]. Int J Syst Evol Microbiol, 2011, 61(P2): 404-407.

    [31] [31] LIU Z P, WANG B J, LIU Y H, et al. Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China[J]. Int J Syst Evol Microbiol, 2005, 55(P3): 1229-1232.

    [32] [32] HALLBERG K B, LINDSTRM E B. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile[J]. Microbiology, 1994, 140 (12): 3451-3456.

    [33] [33] WHITE D C, SUTTON S D, RINGELBERG D B. The genus Sphingomonas: Physiology and ecology[J]. Curr Opin Biotechnol, 1996, 7(3): 301-306.

    [34] [34] YU F B, SHAN S D, LUO L P, et al. Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil[J]. J Environ Sci Health B, 2013, 48(3): 198-207.

    [35] [35] CHEN J L, WONG M H, WONG Y S, et al. Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment[J]. Mar Pollut Bull, 2008, 57(6-12): 695-702.

    [36] [36] PAN F S, MENG Q, WANG Q, et al. Endophytic bacterium Sphingomonas SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in Sedum alfredii Hance[J]. Chemosphere, 2016, 154: 358-366.

    [37] [37] PHAM V H T, JEONG S W, KIM J. Aquabacterium olei sp. nov., an oil-degrading bacterium isolated from oil-contaminated soil[J]. Int J Syst Evol Microbiol, 2015, 65(10): 3597-3602.

    [38] [38] ZHANG R J, WANG X M, ALI A, et al. Single-step removal of calcium, fluoride, and phenol from contaminated water by Aquabacterium sp. CZ3 via facultative anaerobic microbially induced calcium precipitation: Kinetics, mechanism, and characterization[J]. Bioresour Technol, 2022, 361: 127707.

    [39] [39] ZHANG J G, ZHOU A J, LIU Y Z, et al. Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete[J]. Sci Rep, 2017, 7(1): 14600.

    [40] [40] ERSAN Y, BOON N, BELIE N. Microbial self-healing concrete: Denitrification as an enhanced and environment-friendly apporach[C]//5th International conference on Self-Healing Materials (ICSHM 2015). Duke University, 2015.

    [41] [41] BOQUET E, BORONAT A, RAMOS-CORMENZANA A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon[J]. Nature, 1973, 246: 527-529.

    [42] [42] JIN D, ZHAO S G, WANG P P, et al. Insights into abundant rumen ureolytic bacterial community using rumen simulation system[J]. Front Microbiol, 2016, 7: 1006.

    [43] [43] BAI Y H, CHANG Y Y, LIANG J S, et al. Treatment of groundwater containing Mn(II), Fe(II), As(III) and Sb(III) by bioaugmented quartz-sand filters[J]. Water Res, 2016, 106: 126-134.

    [44] [44] GANDHI K S, KUMAR R, RAMKRISHNA D. Some basic aspects of reaction engineering of precipitation processes[J]. Ind Eng Chem Res, 1995, 34(10): 3223-3230.

    [45] [45] JIANG N J, TANG C S, YIN L Y, et al. Applicability of microbial calcification method for sandy-slope surface erosion control[J]. J Mater Civ Eng, 2019, 31(11): 04019250.

    [46] [46] SOMANI R S, PATEL K S, MEHTA A R, et al. Examination of the polymorphs and particle size of calcium carbonate precipitated using still effluent (i.e., CaCl2 + NaCl solution) of soda ash manufacturing process[J]. Ind Eng Chem Res, 2006, 45(15): 5223-5230.

    [47] [47] LIU S Y, YU J, PENG X Q, et al. Preliminary study on repairing tabia cracks by using microbially induced carbonate precipitation[J]. Constr Build Mater, 2020, 248: 118611.

    [48] [48] FAN J H, HE Z L, MA L Q, et al. Immobilization of copper in contaminated sandy soils using calcium water treatment residue[J]. J Hazard Mater, 2011, 189(3): 710-718.

    [49] [49] UCHIMIYA M, LIMA I M, KLASSON K T, et al. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter[J]. Chemosphere, 2010, 80(8): 935-940

    Tools

    Get Citation

    Copy Citation Text

    LAI Yongming, KONG Qiuping. Microbially Induced Calcite Precipitation in Tailings Sand Using In-situ Stimulation of Urease-Producing Microorganisms[J]. Journal of the Chinese Ceramic Society, 2025, 53(5): 1037

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 21, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240551

    Topics