Photonics Research, Volume. 10, Issue 2, 535(2022)

Silicon-integrated nonlinear III-V photonics On the Cover

Weiqiang Xie1...2,†, Chao Xiang1,†, Lin Chang1, Warren Jin1, Jonathan Peters1 and John E. Bowers1,* |Show fewer author(s)
Author Affiliations
  • 1Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, USA
  • 2Current address: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(60)

    [1] M. Lipson. Guiding, modulating, and emitting light on silicon-challenges and opportunities. J. Lightwave Technol., 23, 4222-4238(2005).

    [2] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678-1687(2006).

    [3] W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, D. Van Thourhout. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol., 23, 401-412(2005).

    [4] A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, T.-Y. Liow. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron., 20, 405-416(2013).

    [5] R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, J. E. Bowers. Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers. IEEE Nanotechnol. Mag., 13, 17-26(2019).

    [6] Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita. Silicon photonics for next generation system integration platform. IEEE Commun. Mag., 51, 72-77(2013).

    [7] D. Dai, J. E. Bowers. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics, 3, 283-311(2014).

    [8] C. R. Doerr. Silicon photonic integration in telecommunications. Front. Phys., 3, 37(2015).

    [9] W. Bogaerts, D. Pérez, J. Capmany, D. A. Miller, J. Poon, D. Englund, F. Morichetti, A. Melloni. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [10] N. Margalit, C. Xiang, S. M. Bowers, A. Bjorlin, R. Blum, J. E. Bowers. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett., 118, 220501(2021).

    [11] M. A. Foster, A. C. Turner, M. Lipson, A. L. Gaeta. Nonlinear optics in photonic nanowires. Opt. Express, 16, 1300-1320(2008).

    [12] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [13] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [14] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [15] H. Hu, F. Da Ros, M. Pu. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat. Photonics, 12, 469-473(2018).

    [16] D. T. Spencer, T. Drake, T. C. Briles. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [17] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, S. B. Papp. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [18] M. A. Guidry, D. M. Lukin, K. Y. Yang, R. Trivedi, J. Vučković. Quantum optics of soliton microcombs. Nat. Photonics, 16, 52-58(2022).

    [19] X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [20] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [21] W. Xie, L. Chang, H. Shu, J. C. Norman, J. D. Peters, X. Wang, J. E. Bowers. Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics. Opt. Express, 28, 32894-32906(2020).

    [22] J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, T. J. Kippenberg. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [23] M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, D. J. Blumenthal. 422  million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun., 12, 934(2021).

    [24] J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, T. J. Kippenberg. Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 5, 1347-1353(2018).

    [25] B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, M. Lipson. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [26] A. S. Raja, A. S. Voloshin, H. Guo, S. E. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, T. J. Kippenberg. Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 10, 680(2019).

    [27] B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, W. Xie, J. Guo, D. Kinghorn, L. Wu, Q.-X. Ji, T. J. Kippenberg, K. Vahala, J. E. Bowers. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [28] W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K. J. Vahala, J. E. Bowers. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [29] C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, J. Riemensberger, J. Selvidge, T. J. Kippenberg, J. E. Bowers. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [30] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta. Broad-band optical parametric gain on a silicon photonic chip. Nature, 441, 960-963(2006).

    [31] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [32] C. Xiang, W. Jin, J. Guo, C. Williams, A. M. Netherton, L. Chang, P. A. Morton, J. E. Bowers. Effects of nonlinear loss in high-Q Si ring resonators for narrow-linewidth III-V/Si heterogeneously integrated tunable lasers. Opt. Express, 28, 19926-19936(2020).

    [33] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [34] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141-148(2011).

    [35] C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, H. X. Tang. Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Opt. Express, 19, 10462-10470(2011).

    [36] C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, H. X. Tang. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys., 14, 095014(2012).

    [37] U. D. Dave, B. Kuyken, F. Leo, S.-P. Gorza, S. Combrie, A. De Rossi, F. Raineri, G. Roelkens. Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range. Opt. Express, 23, 4650-4657(2015).

    [38] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Lončar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).

    [39] D. M. Lukin, C. Dory, M. A. Guidry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski, S. Sun, D. Vercruysse, G. H. Ahn, J. Vučković. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics, 14, 330-334(2020).

    [40] D. J. Wilson, K. Schneider, S. Hönl, M. Anderson, Y. Baumgartner, L. Czornomaz, T. J. Kippenberg, P. Seidler. Integrated gallium phosphide nonlinear photonics. Nat. Photonics, 14, 57-62(2020).

    [41] H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, S. B. Papp. Tantala Kerr nonlinear integrated photonics. Optica, 8, 811-817(2021).

    [42] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

    [43] L. Chang, W. Xie, H. Shu, Q.-F. Yang, B. Shen, A. Boes, J. D. Peters, W. Jin, C. Xiang, S. Liu, G. Moille, S.-P. Yu, X. Wang, K. Srinivasan, S. B. Papp, K. Vahala, J. E. Bowers. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Communications, 11, 1331(2020).

    [44] M. A. Afromowitz. Refractive index of Ga1-xAlxAs. Solid State Commun., 15, 59-63(1974).

    [45] G. Stegeman, A. Villeneuve, J. Kang, J. Aitchison, C. Ironside, K. Al-Hemyari, C. Yang, C.-H. Lin, H.-H. Lin, G. Kennedy, R. S. Grant, W. Sibbett. AlGaAs below half bandgap: the silicon of nonlinear optical materials. Int. J. Nonlinear Opt. Phys., 3, 347-371(1994).

    [46] J. S. Aitchison, D. Hutchings, J. Kang, G. Stegeman, A. Villeneuve. The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. Quantum Electron., 33, 341-348(1997).

    [47] S. Ho, C. Soccolich, M. Islam, W. Hobson, A. Levi, R. Slusher. Large nonlinear phase shifts in low-loss AlxGa1-x as waveguides near half-gap. Appl. Phys. Lett., 59, 2558-2560(1991).

    [48] K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison. Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion. Opt. Express, 19, 12440-12455(2011).

    [49] J. J. Wathen, P. Apiratikul, C. J. Richardson, G. A. Porkolab, G. M. Carter, T. E. Murphy. Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides. Opt. Lett., 39, 3161-3164(2014).

    [50] J. McPhillimy, S. May, C. Klitis, B. Guilhabert, M. D. Dawson, M. Sorel, M. J. Strain. Transfer printing of AlGaAs-on-SOI microdisk resonators for selective mode coupling and low-power nonlinear processes. Opt. Lett., 45, 881-884(2020).

    [51] H. El Dirani, C. Monat, S. Brision, N. Olivier, C. Jany, X. Letartre, M. Pu, P. D. Girouard, L. H. Frandsen, E. Semenova, L. K. Oxenløwe, K. Yvind, C. Sciancalepore. SiNOI and AlGaAs-on-SOI nonlinear circuits for continuum generation in Si photonics. Proc. SPIE, 10535, 1053508(2018).

    [52] J. Chiles, N. Nader, E. J. Stanton, D. Herman, G. Moody, J. Zhu, J. C. Skehan, B. Guha, A. Kowligy, J. T. Gopinath, K. Srinivasan, S. A. Diddams, I. Coddington, N. R. Newbury, J. M. Shainline, S. W. Nam, R. P. Mirin. Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon. Optica, 6, 1246-1254(2019).

    [53] E. J. Stanton, L. Chang, W. Xie, A. Malik, J. Peters, J. Chiles, N. Nader, G. Navickaite, D. Sacchetto, M. Zervas, K. Srinivasan, J. E. Bowers, S. B. Papp, S. W. Nam, R. P. Mirin. On-chip polarization rotator for type I second harmonic generation. APL Photon., 4, 126105(2019).

    [54] E. J. Stanton, J. Chiles, N. Nader, G. Moody, N. Volet, L. Chang, J. E. Bowers, S. W. Nam, R. P. Mirin. Efficient second harmonic generation in nanophotonic GaAs-on-insulator waveguides. Opt. Express, 28, 9521-9532(2020).

    [55] B. Kuyken, M. Billet, F. Leo, K. Yvind, M. Pu. Octave-spanning coherent supercontinuum generation in an AlGaAs-on-insulator waveguide. Opt. Lett., 45, 603-606(2020).

    [56] G. Moille, L. Chang, W. Xie, A. Rao, X. Lu, M. Davanco, J. E. Bowers, K. Srinivasan. Dissipative Kerr solitons in a III-V microresonator. Laser Photon. Rev., 14, 2000022(2020).

    [57] H. Shu, B. Shen, L. Chang, W. Xie, J. Qin, M. Jin, X. Zhang, X. Wang, J. E. Bowers. Mode-locked dark-pulse Kerr combs in normal-dispersion AlGaAs-on-insulator microresonators. Conference on Lasers and Electro-Optics, STu2G.4(2021).

    [58] T. J. Steiner, J. E. Castro, L. Chang, Q. Dang, W. Xie, J. Norman, J. E. Bowers, G. Moody. Ultrabright entangled-photon-pair generation from an AlGaAs-on-insulator microring resonator. PRX Quantum, 2, 010337(2021).

    [59] S. Zhang, J. M. Silver, L. Del Bino, F. Copie, M. T. Woodley, G. N. Ghalanos, A. Ø. Svela, N. Moroney, P. Del’Haye. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 6, 206-212(2019).

    [60] A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, L. Maleki. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion. Phys. Rev. A, 71, 033804(2005).

    CLP Journals

    [1] Runlin Miao, Chenxi Zhang, Xin Zheng, Xiang’ai Cheng, Ke Yin, Tian Jiang, "Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation," Photonics Res. 10, 1859 (2022)

    Tools

    Get Citation

    Copy Citation Text

    Weiqiang Xie, Chao Xiang, Lin Chang, Warren Jin, Jonathan Peters, John E. Bowers, "Silicon-integrated nonlinear III-V photonics," Photonics Res. 10, 535 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Oct. 25, 2021

    Accepted: Dec. 19, 2021

    Published Online: Jan. 26, 2022

    The Author Email: John E. Bowers (bowers@ece.ucsb.edu)

    DOI:10.1364/PRJ.446898

    Topics