Chinese Journal of Lasers, Volume. 44, Issue 8, 801005(2017)

Formation of Cascaded Longitudinal Electric Field and Convergence of Radially Polarized Light Based on Conical Mirror and Cylindrical Reflection Mirror

Tan Shiwen1,2、*, Li Jianlang1, and Ueda Ken-Ichi3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(36)

    [1] [1] Mushiake Y, Matsumura K, Nakajima N. Generation of radially polarized optical beam mode by laser oscillation[C]. Proceedings of IEEE, 1972: 1107-1109.

    [2] [2] Hall D G. Vector-beam solutions of Maxwell′s wave equation[J]. Optics Letters, 1996, 21(1): 9-11.

    [3] [3] Zhan Q W. Cylindrical vector beams: From mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

    [4] [4] Quabis S, Dorn R, Eberler M, et al. Focusing light to a tighter spot[J]. Optics Communications, 2000, 179(1/2/3/4/5/6): 1-7.

    [5] [5] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 233901.

    [7] [7] Zheng Xiao, Yang Yanfang, He Ying, et al. Tight focusing of double-ring-shaped Bessel-Gaussian radially polarized beam through a dielectric interface[J]. Acta Optica Sinica, 2016, 36(4): 0426001.

    [8] [8] Cai Xunming, Zhao Jingyun, Fan Menghui, et al. Effect of elliptic annular aperture on focusing of radially polarized beam[J]. Acta Optica Sinica, 2016, 36(3): 0326002.

    [9] [9] Wang H, Yuan G, Tan W, et al. Spot size and depth of focus in optical data storage system[J]. Optical Engineering, 2007, 46(6): 065201.

    [10] [10] Zhan Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004, 12(15): 3377-3382.

    [11] [11] Peng F, Yao B, Yan S, et al. Trapping of low-refractive-index particles with azimuthally polarized beam[J]. Journal of the Optical Society of America B, 2009, 26(12): 2242-2247.

    [12] [12] Liu Z, Jones P H. Fractal conical lens optical tweezers[J]. IEEE Photonics Journal, 2017, 9(1): 1-11.

    [13] [13] Allegre O J, Perrie W, Edwardson S P, et al. Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses[J]. Journal of Optics, 2012, 14(8): 085601.

    [14] [14] Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency[J]. Journal of Physics D: Applied Physics, 1999, 32(13): 1455-1461.

    [15] [15] Gu M, Kang H, Li X. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam[J]. Scientific Reports, 2014: 3627.

    [16] [16] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87.

    [17] [17] Fontana J R, Pantell R H. A high-energy, laser accelerator for electrons using the inverse cherenkov effect[J]. Journal of Applied Physics, 1983, 54(8): 4285-4288.

    [18] [18] Salamin Y I. Low-diffraction direct particle acceleration by a radially polarized laser beam[J]. Physics Letters A, 2010, 374(48): 4950-4953.

    [19] [19] Kimura W D, Kim G H, Romea R D, et al. Laser acceleration of relativistic electrons using the inverse cherenkov effect[J]. Physical Review Letters, 1995, 74(4): 546-549.

    [20] [20] Kimura W D, Steinhauer L C, Kim G H, et al. Update on the aft inverse cerenkov laser acceleration experiment[C]. Proceedings of the 1993 Particle Accelerator Conference, 1993: 2564-2566.

    [21] [21] Goodman J W, Gustafson S C. Introduction to fourier optics[M]. 2nd ed. New York: McGraw-Hill, Inc., 1996: 79-110.

    [22] [22] Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light[M]. 2nd ed. Oxford City: Cambridge University Press, 1964: 375-382.

    [23] [23] McLeod J H. The axicon: A new type of optical element[J]. Journal of the Optical Society of America, 1954, 44(8): 592-597.

    [24] [24] Richards B, Wolf E. Electromagnetic diffraction in optical systems.II. structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1959, 253(1274): 358-379.

    [25] [25] Wolf E. Electromagnetic diffraction in optical systems.I. An integral representation of the image field[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1959, 253(1274): 349-357.

    [26] [26] Prabakaran K, Chandrasekaran R, Mahadevan G, et al. Tight focusing of generalized cylindrical vector beam with high NA lens axicon[J]. Optics Communications, 2013, 295: 230-234.

    [27] [27] Ushakova E E, Kurilkina S N. Formation of Bessel light pulses by means of a conical mirror[J]. Journal of Applied Spectroscopy, 2011, 77(6): 827-831.

    [28] [28] Kuntz K B, Braverman B, Youn S H, et al. Spatial and temporal characterization of a Bessel beam produced using a conical mirror[J]. Physical Review A, 2009, 79(4): 043802.

    [29] [29] Zhu M N, Cao Q, Gao H. Creation of a 50000 lambda long needle-like field with 0.36 lambda width[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2014, 31(3): 500-504.

    [30] [30] Borovikov V A. Uniform stationary phase method[J]. Theoretical & Mathematical Physics, 1994, 2(1): 21-25.

    [31] [31] Conde O M, Perez J, Catedra M F. Stationary phase method application for the analysis of radiation of complex 3-D conducting structures[J]. IEEE Transactions on Antennas and Propagation Society, 2001, 49(5): 724-731.

    [32] [32] Zhao Tingyu, Liu Qinxiao, Yu Feihong. The point spread function analysis in a wavefront coding system based on stationary phase method[J]. Acta Physica Sinica, 2012, 61(7): 074207.

    [33] [33] Pan Chao. Study on applied research in optics of stationary phase method and ambiguity function[J]. Journal of Hubei Polytechnic University, 2010, 26(4): 39-42.

    [34] [34] Zhou Bingkun, Gao Yizhi, Chen Tirong, et al. Principles of laser [M]. 6th ed. Beijing: National Defense of Industry Press, 2009: 74.

    [35] [35] Dyakonov M I, Varshalovich D A. Optical modulation of electron beam by inverse Cerenkov effect[J]. Physics Letters A, 1971, 35(4): 277-278.

    [36] [36] Edighoffer J A, Kimura W D, Pantell R H, et al. Free-electron interactions with light using the inverse cerenkov effect[J]. IEEE Journal of Quantum Electronics, 1981, 17(8): 1507-1514.

    Tools

    Get Citation

    Copy Citation Text

    Tan Shiwen, Li Jianlang, Ueda Ken-Ichi. Formation of Cascaded Longitudinal Electric Field and Convergence of Radially Polarized Light Based on Conical Mirror and Cylindrical Reflection Mirror[J]. Chinese Journal of Lasers, 2017, 44(8): 801005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Mar. 10, 2017

    Accepted: --

    Published Online: Sep. 13, 2017

    The Author Email: Shiwen Tan (tanshiwen1992@163.com)

    DOI:10.3788/cjl201744.0801005

    Topics