Journal of the Chinese Ceramic Society, Volume. 53, Issue 8, 2388(2025)

Methods and Research Progress for High-Quality Laser Processing of Diamond Materials

ZHANG Xiaoyu1,2, WANG Ziang1,2, HU Xiufei1,2, GE Lei1,2、*, WANG Yingnan1,2, HAN Saibin1,2, PENG Yan1,2, XU Mingsheng1,2, and XU Xiangang1,2
Author Affiliations
  • 1Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
  • 2State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • show less
    References(80)

    [1] [1] GUO J, ZHANG J G, PAN Y N, et al. A critical review on the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals[J]. Int J Extrem Manuf, 2020, 2(1): 012001.

    [2] [2] HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability[J]. Nature, 2014, 510(7504): 250-253.

    [4] [4] KISS M, MI S C, HUSZKA G, et al. Diamond diffractive optics: Recent progress and perspectives[J]. Adv Opt Technol, 2021, 10(1): 19-30.

    [8] [8] KARLSSON M, NIKOLAJEFF F. Diamond micro-optics: Microlenses and antireflection structured surfaces for the infrared spectral region[J]. Opt Express, 2003, 11(5): 502-507.

    [9] [9] FORSBERG P, KARLSSON M. High aspect ratio optical gratings in diamond[J]. Diam Relat Mater, 2013, 34: 19-24.

    [10] [10] KAWASEGI N, NIWATA T, MORITA N, et al. Improving machining performance of single-crystal diamond tools irradiated by a focused ion beam[J]. Precis Eng, 2014, 38(1): 174-182.

    [13] [13] BOERNER P, HAJRI M, ACKERL N, et al. Experimental and theoretical investigation of ultrashort pulsed laser ablation of diamond[J]. J Laser Appl, 2019, 31(2): 022202.

    [15] [15] ZHANG Y F, XU S, CUI E N, et al. Research and application progress of laser-processing technology in diamond micro-fabrication[J]. Micromachines, 2024, 15(4): 547.

    [17] [17] GEIS M W, ROTHSCHILD M, KUNZ R R, et al. Electrical, crystallographic, and optical properties of ArF laser modified diamond surfaces[J]. Appl Phys Lett, 1989, 55(22): 2295-2297.

    [18] [18] ROTHSCHILD M, ARNONE C, EHRLICH D J. Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection[J]. J Vac Sci Technol B Microelectron Process Phenom, 1986, 4(1): 310-314.

    [19] [19] STREKALOV V N, KONOV V I, KONONENKO V V, et al. Early stages of laser graphitization of diamond[J]. Appl Phys A, 2003, 76(4): 603-607.

    [20] [20] STREKALOV V N. Graphitization of diamond stimulated by electron-hole recombination[J]. Appl Phys A, 2005, 80(5): 1061-1066.

    [21] [21] Hermani J,Emonts M,Brecher M. Nanosecond laser processing of diamond materials [C].Proceedings of the Lasers in Manufacturing Conference, June 23, 2015, Munich, Germany.

    [22] [22] CADOT G J, BILLINGHAM J, AXINTE D A. A study of surface swelling caused by graphitisation during pulsed laser ablation of carbon allotrope with high content of sp3 bounds[J]. J Phys D: Appl Phys, 2017, 50(24): 245301.

    [23] [23] KONOV V I. Laser in micro and nanoprocessing of diamond materials[J]. Laser Photonics Rev, 2012, 6(6): 739-766.

    [24] [24] ODAKE S, OHFUJI H, OKUCHI T, et al. Pulsed laser processing of nano-polycrystalline diamond: A comparative study with single crystal diamond[J]. Diam Relat Mater, 2009, 18(5-8): 877-880.

    [25] [25] ZHANG Z, ZHANG Q L, XU J H. The crack propagation and surface formation mechanism of single crystalline diamond by a nanosecond pulsed laser[J]. 2021, 130(11): 113105.

    [26] [26] OHFUJI H, OKUCHI T, ODAKE S, et al. Micro-/nanostructural investigation of laser-cut surfaces of single- and polycrystalline diamonds[J]. Diam Relat Mater, 2010, 19(7-9): 1040-1051.

    [27] [27] PICCARDO M, BOSIA F, OLIVERO P, et al. An analytical model for the mechanical deformation of locally graphitized diamond[J]. Diam Relat Mater, 2014, 48: 73-81.

    [28] [28] WANG C Z, HO K M, SHIRK M D, et al. Laser-induced graphitization on a diamond (111) surface[J]. Phys Rev Lett, 2000, 85(19): 4092-4095.

    [29] [29] JESCHKE H O, GARCIA M E, BENNEMANN K H. Microscopic analysis of the laser-induced femtosecond graphitization of diamond[J]. Phys Rev B, 1999, 60(6): R3701-R3704.

    [30] [30] PREUSS S, STUKE M. Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics[J]. Appl Phys Lett, 1995, 67(3): 338-340.

    [31] [31] DUBEY A K, YADAVA V. Laser beam machining: A review[J]. Int J Mach Tools Manuf, 2008, 48(6): 609-628.

    [32] [32] CADOT G B J, AXINTE D A, BILLINGHAM J. Continuous trench, pulsed laser ablation for micro-machining applications[J]. Int J Mach Tools Manuf, 2016, 107: 8-20.

    [33] [33] CADOT G B J, THOMAS K, BEST J P, et al. Investigation of the microstructure change due to phase transition in nanosecond pulsed laser processing of diamond[J]. Carbon, 2018, 127: 349-365.

    [34] [34] KOMLENOK M S, KONONENKO V V, RALCHENKO V G, et al. Laser induced nanoablation of diamond materials[J]. Phys Procedia, 2011, 12: 37-45.

    [35] [35] OKUCHI T, OHFUJI H, ODAKE S, et al. Micromachining and surface processing of the super-hard nano-polycrystalline diamond by three types of pulsed lasers[J]. Appl Phys A, 2009, 96(4): 833-842.

    [36] [36] ACKERL N, WARHANEK M, GYSEL J, et al. Ultra-short pulsed laser conditioning of metallic-bonded diamond grinding tools[J]. Mater Des, 2020, 189: 108530.

    [37] [37] GHADIRI ZAHRANI E, KOPP D, AZARHOUSHANG B. Comparison of material removal efficiency in laser ablation of polycrystalline diamond for different pulse durations[J]. Mater Lett, 2024, 377: 137474.

    [38] [38] GHADIRI ZAHRANI E, AZARHOUSHANG B. Experimental investigation of nanosecond pulsed laser ablation of polycrystalline diamond composite[J]. Opt Laser Technol, 2025, 181: 111634.

    [39] [39] DHUPAL D, DOLOI B, BHATTACHARYYA B. Modeling and optimization on Nd: YAG laser turned micro-grooving of cylindrical ceramic material[J]. Opt Lasers Eng, 2009, 47(9): 917-925.

    [40] [40] KROKHIN O N. Modern physical principles of laser ablation[C]//Proceedings of SPIE. Santa Fe, NM, USA. SPIE, 2000.

    [41] [41] SVELTO O, HANNA D C. Principles of lasers[M]. 5th ed. New York: Springer, 2010: 7

    [42] [42] MOMMA C, CHICHKOV B N, NOLTE S, et al. Short-pulse laser ablation of solid targets[J]. Opt Commun, 1996, 129(1-2): 134-142.

    [43] [43] CHICHKOV B N, MOMMA C, NOLTE S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Appl Phys A Mater Sci Process, 1996, 63(2): 109-115.

    [44] [44] PRONKO P P, DUTTA S K, DU D, et al. Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses[J]. J Appl Phys, 1995, 78(10): 6233-6240.

    [45] [45] MOUHAMADALI F, EQUIS S, SAEIDI F, et al. Nanosecond pulsed laser-processing of CVD diamond[J]. Opt Lasers Eng, 2020, 126: 105917.

    [46] [46] TAKABAYASHI K, TAKAHASHI T, TSUCHIYA E, et al. Morphology and structure of diamond-like carbon film induced by picosecond laser ablation[J]. Appl Phys A, 2022, 128(9): 850.

    [48] [48] NOLASCO L K, COUTO F A, ANDRADE M B, et al. Femtosecond laser micromachining study with multiple wavelengths in CVD diamond[J]. Diam Relat Mater, 2023, 131: 109589.

    [49] [49] KONONENKO T V, MEIER M, KOMLENOK M S, et al. Microstructuring of diamond bulk by IR femtosecond laser pulses[J]. Appl Phys A, 2008, 90(4): 645-651.

    [52] [52] OGAWA Y, OTA M, NAKAMOTO K, et al. A study on machining of binder-less polycrystalline diamond by femtosecond pulsed laser for fabrication of micro milling tools[J]. CIRP Ann, 2016, 65(1): 245-248.

    [53] [53] CHEN G Y, CHEN C, BU C, et al. Research on carbonized layer for truing and dressing of bronze-bonded diamond grinding wheels with laser[J]. Chin J Laser, 2012, 39(3): 0303006.

    [54] [54] CHAO C L, CHOU W C, LIN W C, et al. Fabricating microstructures on CVD diamond film[J]. Int J Surf Sci Eng, 2012, 6(1/2): 59.

    [55] [55] BUTLER-SMITH P W, AXINTE D A, PACELLA M, et al. Micro/nanometric investigations of the effects of laser ablation in the generation of micro-tools from solid CVD diamond structures[J]. J Mater Process Technol, 2013, 213(2): 194-200.

    [58] [58] ZHANG Z, ZHANG Q L, WANG Q W, et al. Surface microstructuring of single crystalline diamond based on the accumulated energy homogenization in the nanosecond pulsed laser ablation[J]. Opt Laser Technol, 2021, 138: 106839.

    [59] [59] CUI X B, GUO Y H, GUO J X, et al. Performance analysis of laser-induced biomimetic ceramic tools in interrupted cutting[J]. Int J Mech Sci, 2020, 177: 105589.

    [60] [60] BTTNER H, MICHAEL K, GYSEL J, et al. Innovative micro-tool manufacturing using ultra-short pulse laser ablation[J]. J Mater Process Technol, 2020, 285: 116766.

    [62] [62] RICHMANN A, KUZMINYKH Y, RICHERZHAGEN B, et al. Laser microjet© cutting of up to 3 mm thick sapphire[C]//International Congress on Applications of Lasers & Electro-Optics. San Diego, California, USA. Laser Institute of America, 2014: 1139-1143.

    [63] [63] SHI G F, HAN D D, WANG S K, et al. Analysis and evaluation of natural diamond cut by water jet - guided laser[C]//Proceedings of the 4th Annual International Conference on Material Engineering and Application (ICMEA 2017). Wuhan, China. Atlantis Press, 2018: 195-198.

    [65] [65] KUBOTA A, NAGAE S, MOTOYAMA S, et al. Two-step polishing technique for single crystal diamond (100) substrate utilizing a chemical reaction with iron plate[J]. Diam Relat Mater, 2015, 60: 75-80.

    [66] [66] THOMAS E L H, MANDAL S, BROUSSEAU E B, et al. Silica based polishing of{100}and{111}single crystal diamond[J]. Sci Technol Adv Mater, 2014, 15(3): 035013.

    [67] [67] KUBOTA A, FUKUYAMA S, ICHIMORI Y, et al. Surface smoothing of single-crystal diamond (100) substrate by polishing technique[J]. Diam Relat Mater, 2012, 24: 59-62.

    [68] [68] PHILLIPS K C, GANDHI H H, MAZUR E, et al. Ultrafast laser processing of materials: A review[J]. Adv Opt Photon, 2015, 7(4): 684-712.

    [69] [69] MISHRA S, YADAVA V. Laser beam MicroMachining (LBMM)-A review[J]. Opt Lasers Eng, 2015, 73: 89-122.

    [70] [70] KONONENKO T V, SOVYK D N, PIVOVAROV P A, et al. Fabrication of diamond diffractive optics for powerful CO2 lasersviareplication of laser microstructures on silicon template[J]. Diam Relat Mater, 2020, 101: 107656.

    [71] [71] ZHAO Y, LIU H G, YU T B, et al. Fabrication of high hardness microarray diamond tools by femtosecond laser ablation[J]. Opt Laser Technol, 2021, 140: 107014.

    [72] [72] LIU H G, XIE L R, LIN W X, et al. Optical quality laser polishing of CVD diamond by UV pulsed laser irradiation[J]. Adv Optical Mater, 2021, 9(21): 2100537.

    [73] [73] YAN B, CHEN N, HE N, et al. Surface modeling and component analysis of picosecond laser ablation of CVD diamond[J]. Diam Relat Mater, 2021, 111: 108191.

    [74] [74] OKAMOTO Y, OKADA A, KAJITANI A, et al. High surface quality micro machining of monocrystalline diamond by picosecond pulsed laser[J]. CIRP Ann, 2019, 68(1): 197-200.

    [75] [75] KOMLENOK M, PASHININ V, SEDOV V, et al. Femtosecond and nanosecond laser polishing of rough polycrystalline diamond[J]. Laser Phys, 2022, 32(8): 084003.

    [76] [76] LIU N, SUGIMOTO K, YOSHITAKA N, et al. Highly efficient finishing of large-sized single crystal diamond substrates by combining nanosecond pulsed laser trimming and plasma-assisted polishing[J]. Ceram Int, 2023, 49(11): 19109-19123.

    [77] [77] SCALBERT W, TANNER D, HOLTZ R. Development of high-power laser ablation process for polycrystalline diamond polishing, Part 2: Upscaling of PCD ultra-short pulsed laser ablation to high power[C]//High-Power Laser Materials Processing: Applications, Diagnostics, and Systems IX. San Francisco, USA. SPIE, 2020: 2544963.

    [80] [80] PRIESKE M, VOLLERTSEN F. Picosecond-laser polishing of CVD-diamond coatings without graphite formation[J]. Mater Today Proc, 2021, 40: 1-4.

    [81] [81] KUMAGAI M, UCHIYAMA N, OHMURA E, et al. Advanced dicing technology for semiconductor wafer: Stealth dicing[J]. IEEE Trans Semicond Manuf, 2007, 20(3): 259-265.

    [82] [82] TOKUNAGA D, SATO M, ITOH S, et al. Focus movement distance per pulse dependence of electrical conductivity and diameter of diamond internal modification induced by picosecond laser[J]. Sci Rep, 2022, 12(1): 17371.

    [83] [83] ASHIKKALIEVA K K, KONONENKO T V, OBRAZTSOVA E A, et al. Direct observation of graphenic nanostructures inside femtosecond- laser modified diamond[J]. Carbon, 2016, 102: 383-389.

    [84] [84] SOTILLO B, BHARADWAJ V, HADDEN J P, et al. Diamond photonics platform enabled by femtosecond laser writing[J]. Sci Rep, 2016, 6: 35566.

    [85] [85] SAKAMOTO K, TOKUNAGA D, ITOH S, et al. Laser slicing of a diamond at the{100}plane using an irradiation sequence that restricts crack propagation along the{111}plane[J]. Diam Relat Mater, 2023, 136: 110045.

    [86] [86] PARKS S M, GROTE R R, HOPPER D A, et al. Fabrication of (111)-faced single-crystal diamond plates by laser nucleated cleaving[J]. Diam Relat Mater, 2018, 84: 20-25.

    [87] [87] HIRAI H, HIDAI H, MATSUSAKA S, et al. Diamond slicing using ultrashort laser-induced graphitization and additional nanosecond laser illumination[J]. Diam Relat Mater, 2019, 96: 126-133.

    [88] [88] WANG H L, WEN Q L, XU X P, et al. Ablation characteristics and material removal mechanisms of a single-crystal diamond processed by nanosecond or picosecond lasers[J]. Opt Express, 2021, 29(14): 22714-22731.

    [90] [90] TAKAYAMA N, YAN J W. Mechanisms of micro-groove formation on single-crystal diamond by a nanosecond pulsed laser[J]. J Mater Process Technol, 2017, 243: 299-311.

    [91] [91] White Y V, Parrish M, Li X, et al. Proceedings of the SPIE Nanoscience Engineering [C]. Nanoengineering: Fabrication, Properties, Optics, and Devices V, San Diego, CA, USA, 10-14 August 2008; Dobisz, E.A, Ed.; SPIE: Paris, France, 2008, 7039: 70390J1‐10.

    [92] [92] LI Z J, CHEN N, LI L, et al. Influence of the grain size of CVD diamond on the thermal conductivity, material removal depth and surface roughness in nanosecond laser machining[J]. Ceram Int, 2020, 46(12): 20510-20520.

    [93] [93] CHEN N, LI Z J, WU Y, et al. Investigating the ablation depth and surface roughness of laser-induced nano-ablation of CVD diamond material[J]. Precis Eng, 2019, 57: 220-228.

    [94] [94] DUDEK M, ROSOWSKI A, KOZANECKI M, et al. Microstructures manufactured in diamond by use of laser micromachining[J]. Materials, 2020, 13(5): 1199.

    [95] [95] GOLOTA N C, PREISS D, FREDIN Z P, et al. High aspect ratio diamond nanosecond laser machining[J]. Appl Phys A Mater Sci Process, 2023, 129(7): 490.

    [96] [96] JEONG B, LEE B, KIM J H, et al. Drilling of sub-100 m hourglass-shaped holes in diamondwith femtosecond laser pulses[J]. Quantum Electron, 2020, 50(2): 201-204.

    [98] [98] WANG Z, JIANG L, LI X W, et al. High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching[J]. Opt Lett, 2018, 43(1): 98-101.

    [99] [99] YAO Z L, JIANG L, LI X W, et al. Non-diffraction-length, tunable, Bessel-like beams generation by spatially shaping a femtosecond laser beam for high-aspect-ratio micro-hole drilling[J]. Opt Express, 2018, 26(17): 21960-21968.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Xiaoyu, WANG Ziang, HU Xiufei, GE Lei, WANG Yingnan, HAN Saibin, PENG Yan, XU Mingsheng, XU Xiangang. Methods and Research Progress for High-Quality Laser Processing of Diamond Materials[J]. Journal of the Chinese Ceramic Society, 2025, 53(8): 2388

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 8, 2025

    Accepted: Sep. 5, 2025

    Published Online: Sep. 5, 2025

    The Author Email: GE Lei (leige@sdu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20250078

    Topics