Chinese Journal of Lasers, Volume. 50, Issue 20, 2002301(2023)

Prediction and Model Establishment of Inclined Surface Roughness of Laser Selective Melting Formed 316L Stainless Steel

Guang Yang*, Kaibo Cheng, Shuo Zhao, and Da An
Author Affiliations
  • Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, Liaoning, China
  • show less
    References(23)

    [1] Wang D, Liu Y, Yang Y Q et al. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting[J]. Rapid Prototyping Journal, 22, 706-716(2016).

    [2] Qin Y L, Sun B H, Zhang H et al. Development of selective laser melted aluminum alloys and aluminum matrix composites in aerospace field[J]. Chinese Journal of Lasers, 48, 1402002(2021).

    [3] Song J F, Song Y N, Wang W W et al. Prediction and control on the surface roughness of metal powder using selective laser melting[J]. Chinese Journal of Lasers, 49, 0202008(2022).

    [4] Jiang H, Pan T, Wu W Z. Characteristics and research status of selective laser melting technology[J]. Scientific and Technological Innovation, 9-12(2021).

    [5] Li R D, Liu J H, Shi Y S et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology, 59, 1025-1035(2012).

    [6] Mu W H, Chen X H, Zhang Y et al. Surface morphology analysis and roughness prediction of 316L stainless steel by selective laser melting[J]. Laser & Optoelectronics Progress, 59, 0714011(2022).

    [7] Greco S, Gutzeit K, Hotz H et al. Selective laser melting (SLM) of AISI 316L-impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density[J]. The International Journal of Advanced Manufacturing Technology, 108, 1551-1562(2020).

    [8] Wei Y P, Wu D Z, Terpenny J. A decision-level data fusion approach to surface roughness prediction[C](2019).

    [9] Li B, Dai S B, Gu H et al. Influence of SLM sloping angle on forming accuracy of 316L stainless steel[J]. Applied Laser, 41, 454-459(2021).

    [10] Boschetto A, Bottini L, Veniali F. Roughness modeling of AlSi10Mg parts fabricated by selective laser melting[J]. Journal of Materials Processing Technology, 241, 154-163(2017).

    [11] Lyukshin V, Shatko D, Strelnikov P. Methods and approaches to the surface roughness assessment[J]. Materials Today: Proceedings, 38, 1441-1444(2021).

    [12] Fan E X, Liu X X, Wu H H. Development of laser selective melting additive manufacturing technology[J]. Machinery, 59, 45-49(2021).

    [13] Wang M S, Du Y L. Research progress of additive manufacturing of TiAl alloys[J]. Acta Aeronautica et Astronautica Sinica, 42, 625263(2021).

    [14] Yang J X, Wu W L, Wang C L et al. Development status and typical application of selective laser melting technology applications in aerospace field[J]. Journal of Aeronautical Materials, 41, 1-15(2021).

    [15] Yang Q, Lu Z L, Huang F X et al. Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 59, 26-31(2016).

    [16] Tao Y Y, Xue W P, Tang H F et al. Application of laser additive manufacturing technology in turbine blade and vane[J]. Gas Turbine Experiment and Research, 29, 44-50, 55(2016).

    [17] Shi G H, Guan C Q, Quan D L et al. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing[J]. Chinese Journal of Aeronautics, 33, 1252-1259(2020).

    [18] Dong P, Liang X K, Zhao Y H et al. Research status of laser additive manufacturing in integrity and lightweight[J]. Aerospace Manufacturing Technology, 7-11(2018).

    [19] Hertlein N, Deshpande S, Venugopal V et al. Prediction of selective laser melting part quality using hybrid Bayesian network[J]. Additive Manufacturing, 32, 101089(2020).

    [20] Ahn D, Kim H, Lee S. Surface roughness prediction using measured data and interpolation in layered manufacturing[J]. Journal of Materials Processing Technology, 209, 664-671(2009).

    [21] Feng S C, Kamat A M, Sabooni S et al. Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions[J]. Virtual and Physical Prototyping, 16, S66-S84(2021).

    [22] Strano G, Hao L, Everson R M et al. Surface roughness analysis, modelling and prediction in selective laser melting[J]. Journal of Materials Processing Technology, 213, 589-597(2013).

    [23] Kamat A M, Pei Y T. An analytical method to predict and compensate for residual stress-induced deformation in overhanging regions of internal channels fabricated using powder bed fusion[J]. Additive Manufacturing, 29, 100796(2019).

    Tools

    Get Citation

    Copy Citation Text

    Guang Yang, Kaibo Cheng, Shuo Zhao, Da An. Prediction and Model Establishment of Inclined Surface Roughness of Laser Selective Melting Formed 316L Stainless Steel[J]. Chinese Journal of Lasers, 2023, 50(20): 2002301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Mar. 9, 2023

    Accepted: May. 24, 2023

    Published Online: Sep. 20, 2023

    The Author Email: Yang Guang (yangguang@sau.edu.cn)

    DOI:10.3788/CJL230607

    Topics