Acta Optica Sinica, Volume. 43, Issue 12, 1228003(2023)
Novel Surface Plasmon Resonance Fiber-Optic Biosensor for Phenol Concentration
[1] Hu C, Zhao Q, Zang G L et al. Preparation and characterization of a novel Ni-doped TiO2 nanotube-modified inactive electrocatalytic electrode for the electrocatalytic degradation of phenol wastewater[J]. Electrochimica Acta, 405, 139758(2022).
[2] Jiang B, Zeng Q Z, Liu J X et al. Enhanced treatment performance of phenol wastewater and membrane antifouling by biochar-assisted EMBR[J]. Bioresource Technology, 306, 123147(2020).
[3] Zhong N B, Yuan J L, Luo Y H et al. Intimately coupling photocatalysis with phenolics biodegradation and photosynthesis[J]. Chemical Engineering Journal, 425, 130666(2021).
[4] Karunarathne H D S S, Amarasinghe B M W P K. Fixed bed adsorption column studies for the removal of aqueous phenol from activated carbon prepared from sugarcane bagasse[J]. Energy Procedia, 34, 83-90(2013).
[5] Yan P C, Jiang D S, Li H N et al. BiPO4 nanocrystal/BiOCl nanosheet heterojunction as the basis for a photoelectrochemical 4-chlorophenol sensor[J]. Sensors and Actuators B: Chemical, 279, 466-475(2019).
[6] Karimi-Maleh H, Fakude C T, Mabuba N et al. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor[J]. Journal of Colloid and Interface Science, 554, 603-610(2019).
[7] Xin X, Liu H M, Zhong N B et al. A highly sensitive plastic optic-fiber with a molecularly imprinted polymer coating for selective detection of 4-chlorophenol in water[J]. Sensors and Actuators B: Chemical, 357, 131468(2022).
[8] Huang R X, Wang Y, Zhou W C et al. High-sensitivity interferometric fiber sensor with non-adiabatic structure mode[J]. Acta Optica Sinica, 41, 2306001(2021).
[9] Xu T T, Yang Y Q, Yang W L et al. Cascaded double-cavity temperature sensor based on hollow fibers encapsulated by PDMS membrane[J]. Acta Optica Sinica, 42, 0806004(2022).
[10] Mishra S K, Chiang K S. Phenolic-compounds sensor based on immobilization of tyrosinase in polyacrylamide gel on long-period fiber grating[J]. Optics & Laser Technology, 131, 106464(2020).
[11] Zhong N B, Chen M, Wang Z K et al. Photochemical device for selective detection of phenol in aqueous solutions[J]. Lab on a Chip, 18, 1621-1632(2018).
[12] Zhong N B, Chen M, Chang H X et al. Optic fiber with Er3+∶YAlO3/SiO2/TiO2 coating and polymer membrane for selective detection of phenol in water[J]. Sensors and Actuators B: Chemical, 273, 1744-1753(2018).
[13] Wall J F, Clauberg E, Murray R W et al. Real-time monitoring of the deposition and growth of thin organic films by in situ ellipsometry[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13, 2348-2354(1995).
[14] Singh S, Mishra S K, Gupta B D. SPR based fibre optic biosensor for phenolic compounds using immobilization of tyrosinase in polyacrylamide gel[J]. Sensors and Actuators B: Chemical, 186, 388-395(2013).
[15] Ma J X, Wang Y H, Zhang M Y et al. Static-pressure penetration field test of PHC pipe pile based on fiber Bragg grating sensor[J]. Acta Optica Sinica, 40, 1206004(2020).
[16] Wang J, Wang L, Su X Q et al. Temperature, stress, refractive index and humidity multi parameter highly integrated optical fiber sensor[J]. Optics & Laser Technology, 152, 108086(2022).
[17] Xing X K, Kuang K B, Qin H Y. Novel fiber Bragg grating tilt sensor with high sensitivity[J]. Acta Optica Sinica, 42, 0706004(2022).
[18] Cao Z X, Wu L N, Liang D K. Gold and silver film optical fiber SPR sensors[J]. Acta Photonica Sinica, 33, 1169-1171(2004).
[19] Yu S M, Cheng J, Zuo P et al. Immobilization of horseradish peroxidase to pillared clay as carrier[J]. Journal of Chemical Industry and Engineering (China), 57, 3021-3024(2006).
[20] Turac E, Sahmetlioglu E. Oxidative polymerization of 4-[(4-phenylazo-phenyimino)-methyl]-phenol catalyzed by horseradish peroxidase[J]. Synthetic Metals, 160, 169-172(2010).
[21] Petronijević M, Panić S, Savić S et al. Characterization and application of biochar-immobilized crude horseradish peroxidase for removal of phenol from water[J]. Colloids and Surfaces B: Biointerfaces, 208, 112038(2021).
[22] Wang Y L, Wei J J. Research of the catalytic degradation process of phenol by horseradish peroxidase[J]. Guangdong Chemical Industry, 43, 51-53(2016).
[23] Kazemi S H, Khajeh K. Electrochemical studies of a novel biosensor based on the CuO nanoparticles coated with horseradish peroxidase to determine the concentration of phenolic compounds[J]. Journal of the Iranian Chemical Society, 8, S152-S160(2011).
[24] Peng F, Liu Z C, Yu Q H et al. Fiber-optic evanescent wave biosensor for selective detection of H2O2 concentration[J]. Acta Optica Sinica, 42, 1006001(2022).
[25] Zhang C, Cai X L. Immobilization of horseradish peroxidase on Fe3O4/nanotubes composites for biocatalysis-degradation of phenol[J]. Composite Interfaces, 26, 379-396(2019).
Get Citation
Copy Citation Text
Linyang Li, Fei Peng, Nianbing Zhong, Quanhua Xie, Bin Tang, Haixing Chang, Dengjie Zhong. Novel Surface Plasmon Resonance Fiber-Optic Biosensor for Phenol Concentration[J]. Acta Optica Sinica, 2023, 43(12): 1228003
Category: Remote Sensing and Sensors
Received: Aug. 29, 2022
Accepted: Oct. 12, 2022
Published Online: May. 9, 2023
The Author Email: Zhong Nianbing (zhongnianbing@163.com)