Opto-Electronic Engineering, Volume. 50, Issue 11, 230215-1(2023)
Research on wavefront measurement technology of space-based telescope using Shack-Hartmann wavefront sensor
[2] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Phys Rev Lett, 116, 061102(2016).
[3] Bian L G, Cai R G, Cao S et al. The gravitational-wave physics II: progress[J]. Sci China Phys, Mech Astron, 64, 120401(2021).
[4] Piccinni O J. Status and perspectives of Continuous Gravitational Wave searches[J]. Galaxies, 10, 72(2022).
[5] Bailes M, Berger B K, Brady P R et al. Gravitational-wave physics and astronomy in the 2020s and 2030s[J]. Nat Rev Phys, 3, 344-366(2021).
[6] Weber J. Detection and generation of gravitational waves[J]. Phys Rev, 117, 306-313(1960).
[7] van Remortel N, Janssens K, Turbang K. Stochastic gravitational wave background: methods and implications[J]. Prog Part Nucl Phys, 128, 104003(2023).
[8] Abbott R, Abbott T D, Acernese F et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run[J]. Phys Rev X, 13, 041039(2023).
[9] Aasi J, Abadie J, Abbott B P et al. The characterization of Virgo data and its impact on gravitational-wave searches[J]. Class Quantum Grav, 29, 155002(2012).
[10] K Danzmann for the LISA Study Team . LISA-an ESA cornerstone mission for a gravitational wave observatory[J]. Class Quantum Grav, 14, 1399-1404(1997).
[11] Luo J, Chen L S, Duan H Z et al. TianQin: a space-borne gravitational wave detector[J]. Class Quantum Grav, 33, 035010(2016).
[12] Kawamura S, Ando M, Seto N et al. The Japanese space gravitational wave antenna: DECIGO[J]. Class Quantum Grav, 28, 094011(2011).
[13] Lu X Y, Tan Y J, Shao C G. Sensitivity functions for space-borne gravitational wave detectors[J]. Phys Rev, 100, 044042(2019).
[14] Fan Z C, Zhao L J, Cao S Y et al. High performance telescope system design for the TianQin project[J]. Class Quantum Grav, 39, 195017(2022).
[15] Sankar S R, Livas J. Optical alignment and wavefront error demonstration of a prototype LISA telescope[J]. Class Quantum Grav, 37, 065005(2020).
[16] Bates W J. A wavefront shearing interferometer[J]. Proc Phys Soc, 59, 940(1947).
[17] Rao C H, Zhu L, Zhang L Q et al. Development of solar adaptive optics[J]. Opto-Electron Eng, 45, 170733(2018).
[18] Roddier F, Roddier C, Roddier N. Curvature sensing: a new wavefront sensing method[J]. Proc SPIE, 976, 203-209(1988).
[19] Shatokhina I, Hutterer V, Ramlau R. Review on methods for wavefront reconstruction from pyramid wavefront sensor data[J]. J Astron Telesc, Instrum, Syst, 6, 010901(2020).
[20] Li C H, Xian H, Rao C H et al. Field-of-view shifted Shack-Hartmann wavefront sensor for daytime adaptive optics system[J]. Opt Lett, 31, 2821-2823(2006).
[21] Zhang L Q, Bao H, Rao X J et al. Ground-layer adaptive optics for the New Vacuum Solar Telescope: Instrument description and first results[J]. Sci China Phys, Mech Astron, 66, 269611(2023).
[22] Jiang W H, Xian H, Shen F. Detecting error of Shack-Hartmann wavefront sensor[J]. Chin J Quantum Electron, 15, 218-227(1998).
[23] Arines J, Ares J. Minimum variance centroid thresholding[J]. Opt Lett, 27, 497-499(2002).
[24] Lardière O, Conan R, Clare R et al. Compared performance of different centroiding algorithms for high-pass filtered laser guide star Shack-Hartmann wavefront sensors[J]. Proc SPIE, 7736, 821-835(2010).
[25] Ma X Y, Rao C H, Zheng H Q et al. Error analysis of CCD-based point source centroid computation under the background light[J]. Opt Express, 17, 8525-8541(2009).
[26] Smithson R C, Tarbell T D. Correlation tracking study for meter-class solar telescope on space shuttle[R](1977).
[27] Waldmann T A, Berkefeld T, von der Lühe II O. Turbulence profiling using wide field of view Hartmann-Shack wavefront sensors[J]. Proc SPIE, 7015, 70155O(2008).
[28] Miura N, Noto Y, Kato S et al. Solar adaptive optics system using an electromagnetic deformable mirror[J]. Opt Rev, 16, 558-561(2009).
[29] Schewel J. Field Programmable Gate Arrays (FPGAs) for fast board development and reconfigurable computing[C](1995).
[30] Von Der Luehe O. A study of a correlation tracking method to improve imaging quality of ground-based solar telescopes[J]. Astron Astrophys, 119, 85-94(1983).
[31] Poyneer L A. Correlation wave-front sensing algorithms for shack-hartmann-based adaptive optics using a point source[C](2003).
[32] Li X X, Li X Y, Wang C X. Improvement of correlation-based centroiding methods for point source Shack–Hartmann wavefront sensor[J]. Opt Commun, 411, 187-194(2018).
[33] Hu X C, Li X H, Wang Y et al. Fundamentals of the orbit and response for TianQin[J]. Classical and Quantum Gravity, 35, 095008(2018).
[34] Zhao Y, Shen J, Fang C et al. Tilt-to-length noise coupled by wavefront errors in the interfering beams for the space measurement of gravitational waves[J]. Opt Express, 28, 25545-25561(2020).
[35] Chen Z W, Leng R K, Yan C X et al. Analysis of telescope wavefront aberration and optical path stability in space gravitational wave detection[J]. Appl Sci, 12, 12697(2022).
[36] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. J Refract Surg, 17, S573-S557(2001).
[37] Kong L, Zhu L, Rao C H. Development status on the real-time controller for solar multi-conjugate adaptive optics system[J]. Proc SPIE, 9682, 96820M(2016).
[38] Thomas S, Fusco T, Tokovinin A et al. Comparison of centroid computation algorithms in a Shack–Hartmann sensor[J]. Mon Not Roy Astron Soc, 371, 323-336(2006).
[39] Löfdahl M G. Evaluation of image-shift measurement algorithms for solar Shack-Hartmann wavefront sensors[J]. Astron Astrophys, 524, A90(2010).
[40] Chen L H, Rao C H. Error analysis of correlating Shack-Hartmann wave-front sensor for a point source[J]. Acta Phys Sin, 60, 090701(2011).
[41] Mugnier L M, Blanc A, Idier J. Phase diversity: a technique for wave-front sensing and for diffraction-limited imaging[J]. Adv Imaging Electron Phys, 141, 1-76(2006).
[42] Li X Y, Jiang W H. Zernike modal wavefront reconstruction error of Hartmann-Shack wavefront sensor[J]. Acta Opt Sin, 22, 1236-1240(2002).
[43] Cao G, Yu X. Accuracy analysis of a Hartmann-Shack wavefront sensor operated with a faint object[J]. Opt Eng, 33, 2331-2335(1994).
[44] Li X Y, Jiang W H, Wang C H et al. Modal reconstruction error of the Hartmann sensor on measuring the atmosphere disturbed wavefront II[J]. High Power Laser Part Beams, 12, 319-323(2000).
Get Citation
Copy Citation Text
Xiya Wei, Qilin Song, Jinsheng Yang, Lanqiang Zhang, Yang Li, Linhai Huang, Naiting Gu, Changhui Rao. Research on wavefront measurement technology of space-based telescope using Shack-Hartmann wavefront sensor[J]. Opto-Electronic Engineering, 2023, 50(11): 230215-1
Category: Article
Received: Sep. 1, 2023
Accepted: Dec. 8, 2023
Published Online: Mar. 26, 2024
The Author Email: Changhui Rao (饶长辉)