Infrared and Laser Engineering, Volume. 44, Issue 11, 3336(2015)

Study on de-agglomeration of the silica microsphere

Tian Yuan*, Yang Junjie, Lai Xue, Shan Xinzhi, and Sui Guorong
Author Affiliations
  • [in Chinese]
  • show less
    References(31)

    [1] [1] Liu Jingchun, Han Jiancheng. Application of the cross century high-tech materials of nano SiO2[J]. The New Type Material of Chemistry Engineering, 1998, 7: 3-6.

    [2] [2] Novotny V. Application of nonaqueous colloids[J]. Colloids and Surfaces, 1987, 24: 361-364.

    [3] [3] Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional band gap near 1.5 micrometers[J]. Nature, 2000, 405(6785): 437-440.

    [4] [4] Schroden R C, A1-Daous M, Blanford C F, et al. Optical properties of inverse opal photonic crystals[J]. Chemistry of Materialsl, 2002, 14(8): 3305-3315.

    [5] [5] Jiang P, Bertone J F, Colvin V L. A lost-wax approach to monodisperse colloids and their crystals[J]. Science, 2001, 291(5503): 453-457.

    [6] [6] Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization[J]. Nature, 1997, 389(6650): 447-448.

    [7] [7] Brain T Holland, Christopher F BLanford, Andreas Stein.synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids[J]. Science, 1998, 281(5376): 538-540.

    [8] [8] Velev O D, Tessier P M, Lenhoff A M, et al. Materials: A class of porous metallic nanostructures[J]. Nature, 1999, 401(6753): 548.

    [9] [9] Li Zhiyuan, Zhang Zhaoqing. Fragility of photonic band gaps in inverse-opal photonic crystals[J]. Phys Rev: B, 2000, 62: 1516-1519.

    [10] [10] Wang Zengbo, Guo Wei, Li Lin, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nat Comm, 2011, 2: 218-223.

    [11] [11] George M Whitesides, Bartosz Grzybowski. Self-assembly at all scales[J]. Science, 2002, 295: 2418-2421.

    [12] [12] Mackay Michael E, Tuteja Anish, Duxbury Phillip M, et al. General strategies for nanoparticle dispersion[J]. Science, 2006, 311: 1740-1743.

    [13] [13] Lee B I, Rives J P. Dispersion of alumina powders in nonaqueous media[J]. Colloids and Surfaces, 1991, 56: 25-27.

    [14] [14] Lange F F. Powders processing science and technology for increased reliability[J]. J Am Geram Soc, 1989, 72(1): 3-15.

    [15] [15] Norris D J, Arlinghaus E G. Opaline photonic crystals: how does self-Assembly work[J]. Advance Materials, 2004, 16: 1393-1399.

    [16] [16] Chen L, Dong P. Diffusion coefficient of petroleum residue fractions in a SiO2 model catalyst[J]. Ind Eng Chem Res,2009, 23(6): 2862-2866.

    [17] [17] Hao Xiang, Kuang Cuifang, Li Yanghui. Hydrophilic microsphere based microscopic-lens microscope[J]. Opt Commun, 2012, 285: 4130-4133.

    [18] [18] Kuang Cuifang, Liu Yong, Hao Xiang, et al. Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion[J]. Opt Commun, 2012 285: 402-406.

    [19] [19] Ku Yulong, Kuang Cuifang, Hao Xiang, et al. Superenhanced three-dimensional confinement of light by compound metal-dielectric microspheres[J]. Opt Express, 2012, 20(15): 16981-16991.

    [20] [20] Yokoyma T, Huang C C. Nanoparticle technology for the production of functional materials[J]. KONA, Powder and Particle, 2005, 23: 7-17.

    [21] [21] Michael E Mackay, Anish Tuteja, Phillip M Duxbury, et al. General strategies for nanoparticle dispersion[J]. Science, 2006, 311(5768): 1740-1743.

    [22] [22] Zhu Y P, Xu L L, Li C F. Research progress of nanoparticle agglomeration[J]. Journal of Tianjin Medical University, 2006, 11(2): 338-341.

    [23] [23] Pampuch R, Haberko K. Agglomerate in Ceramic Micropowders and their Behaviour on Cold Pressing and Sintering[M]. Amsterdam: Elsevier Scientific Publishing Company, 1983, 16: 623-634.

    [24] [24] Kim J U, O′Shaughnessy B. Morphology selection of nanoparticle dispersions by polymer media[J]. Phys Rev Lett, 2002, 89(23): 238301-1-238301-4.

    [25] [25] Cui H M, Liu H, Wang J Y, et al. Agglomeration and disperasion of nano-scale powders[J]. Materials for Mechanical Engineering, 2004, 28(8): 38-41.

    [26] [26] Li Z H, Li F Q, Ma P H. Elimination methods and mechanism of agglomeration of ultrafine powders[J]. Journal of Salt Lake Research, 2005, 13(1): 31-36.

    [27] [27] Lei L, Lu N N, Wu M H, et al. De-aggregation of nano-TiO2 soft agglomeration in aqueous medium[J]. CIESC Journal, 2009, 60(12): 3159-3163.

    [28] [28] Huang Suping, Zhang Qingcen. Dispersion mechanism of ultrafine silica[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(3): 522-526.

    [29] [29] Zhang Qingcen, Huang Suping. Effect of non-ionic dispersants on the stability of colloidal silica[J]. Multipurpose Utilization of Mineral Resources, 2001, 4: 15-18.

    [30] [30] Ren J, Lu S C. Effect of dispersion of dispersant on particles in water media[J]. Journal of University of Science and Technology Beijing, 1998, 20(1): 7-10.

    [31] [31] Yuan Yan, Zhang Rui, Qi Dongming, et al. Deaggregation behavior in the dispersion process of silica soft aggregation into ethanol media[J]. Journal of Zhejiang Sci-Tech University, 2011, 28(4): 485-489.

    CLP Journals

    [1] Liu Yan, Fan Fei, Bai Jinjun, Wang Xianghui, Chang Shengjiang. Polarization-independent nonamer terahertz metamaterial[J]. Infrared and Laser Engineering, 2017, 46(12): 1221002

    Tools

    Get Citation

    Copy Citation Text

    Tian Yuan, Yang Junjie, Lai Xue, Shan Xinzhi, Sui Guorong. Study on de-agglomeration of the silica microsphere[J]. Infrared and Laser Engineering, 2015, 44(11): 3336

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 非线性光学

    Received: Mar. 17, 2015

    Accepted: Apr. 13, 2015

    Published Online: Jan. 26, 2016

    The Author Email: Yuan Tian (tianyuanusst@hotmail.com)

    DOI:

    CSTR:32186.14.

    Topics