Acta Photonica Sinica, Volume. 52, Issue 10, 1052421(2023)

Liquid Crystal-based Wide-angle Terahertz Tunable Metasurface Absorber

Yueyang JING, Peili LI*, Yajie ZHANG, Yang CAO, and Yu CHEN
Author Affiliations
  • College of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
  • show less
    References(29)

    [1] DAVIES A G, LINFIELD E H, JOHNSTON M B. The development of terahertz sources and their applications[J]. Physics in Medicine and Biology, 47, 3679-3689(2002).

    [2] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [3] FUJITA K, JUNG S, JIANG Y et al. Recent progress in terahertz difference-frequency quantum cascade laser sources[J]. Nanophotonics, 7, 1795-1817(2018).

    [4] LEWIS R A. A review of terahertz detectors[J]. Journal of Physics D-Applied Physics, 52, 433001(2019).

    [5] SMITH D R, PENDRY J B, WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science, 305, 788-792(2004).

    [6] LIU Y, ZHANG X. Metamaterials: a new frontier of science and technology[J]. Chemical Society Reviews, 40, 2494-2507(2011).

    [7] HE Q, SUN S, ZHOU L. Review article tunable/reconfigurable metasurfaces: physics and applications[J]. Research, 2019, 1849272(2019).

    [8] WAN X, JIANG W X, MA H F et al. A broadband transformation-optics metasurface lens[J]. Applied Physics Letters, 104, 151601(2014).

    [9] ZHAO Y T, WU B, HUANG B J et al. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface[J]. Optics Express, 25, 7161-7169(2017).

    [10] AGARWAL P, KISHOR K, SINHA R K. Ultrasensitive dual-band terahertz metasurface sensor based on all InSb resonator[J]. Optics Communications, 522, 128667(2022).

    [11] NEBIOGLU M A, TAKAN T, ALTAN H et al. An indium tin oxide metasurface filter for terahertz applications: design, fabrication, and characterization[J]. Modern Physics Letters B, 31, 1750074(2017).

    [12] CONG L, XU N, ZHANG W et al. Polarization control in terahertz metasurfaces with the lowest order rotational symmetry[J]. Advanced Optical Materials, 3, 1176-1183(2015).

    [13] TSILIPAKOS O, TASOLAMPROU A C, PITILAKIS A et al. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software-defined metasurfaces with an embedded network of controllers[J]. Advanced Optical Materials, 8, 2000783(2020).

    [14] MIAO Z, WU Q, LI X et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J]. Physical Review X, 5, 041027(2015).

    [15] WANG G, TIAN H, WANG J et al. Electronically controlled flexible terahertz metasurface based on the loss modulation of strontium titanate[J]. Optics Letters, 47, 94-97(2022).

    [16] YAGHMAEE P, KARABEY O H, BATES B et al. Electrically tuned microwave devices using liquid crystal technology[J]. International Journal of Antennas and Propagation, 2013, 824214(2013).

    [17] DU Hongyan, ZHANG Zidong, TIAN Rui et al. Research progress in broadband absorber based on artificial electromagnetic medium[J]. Journal of Materials Engineering, 48, 23-33(2020).

    [18] YIN Z, LU Y, XIA T et al. Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal[J]. Rsc Advances, 8, 4197-4203(2018).

    [19] YIN Z, WAN C, DENG G et al. Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal[J]. Applied Sciences-Basel, 8, 2454(2018).

    [20] DENG G, HU H, MO H et al. Tunable terahertz metamaterial wideband absorber with liquid crystal[J]. Optical Materials Express, 11, 4026-4635(2021).

    [21] DENG G, HU H, MO H et al. Liquid crystal-based wide-angle metasurface absorber with large frequency tunability and low voltage[J]. Optics Express, 30, 22550-22561(2022).

    [23] KHOO I C. Nonlinear optics of liquid crystalline materials[J]. Physics Reports-Review Section of Physics Letters, 471, 221-267(2009).

    [24] SUI S, MA H, WANG J et al. Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber[J]. Journal of Physics D-Applied Physics, 48, 215101(2015).

    [25] JIA Y, WANG J, CHEN W et al. Research progress on rapid optimization design methods of metamaterials based on intelligent algorithms[J]. Journal of Radars, 10, 220-239(2021).

    [26] VENTER G, SOBIESZCZANSKI-SOBIESKI J. Particle swarm optimization[J]. Aiaa Journal, 41, 1583-1589(2003).

    [27] HOLLOWAY C L, KUESTER E F, NOVOTNY D. Waveguides composed of metafilms/metasurfaces: the two-dimensional equivalent of metamaterials[J]. IEEE Antennas and Wireless Propagation Letters, 8, 525-539(2009).

    [28] DENG G, XIA T, JING S et al. A tunable metamaterial absorber based on liquid crystal intended for F frequency band[J]. IEEE Antennas and Wireless Propagation Letters, 16, 2062-2065(2017).

    [29] DENG G, LU Y, YIN Z et al. A tunable polarization-dependent terahertz metamaterial absorber based on liquid crystal[J]. Electronics, 7, 27(2018).

    [30] LV J F, DING C, MENG F Y et al. A tunable metamaterial absorber based on liquid crystal with the compact unit cell and the wideband absorption[J]. Liquid Crystals, 48, 1438-1447(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yueyang JING, Peili LI, Yajie ZHANG, Yang CAO, Yu CHEN. Liquid Crystal-based Wide-angle Terahertz Tunable Metasurface Absorber[J]. Acta Photonica Sinica, 2023, 52(10): 1052421

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 29, 2023

    Accepted: Oct. 18, 2023

    Published Online: Dec. 5, 2023

    The Author Email: Peili LI (lipl@njupt.edu.cn)

    DOI:10.3788/gzxb20235210.1052421

    Topics