Acta Photonica Sinica, Volume. 53, Issue 10, 1053403(2024)

Mechanism and Application of Ionizing Radiation in Modulating the Physical Properties of Two-dimensional Materials(Invited)

Tengteng GAO1,2, Wenqi QIAN1,2, Haiyi LIU1,2, Xueying WANG1,2, Fangxun LIU1,2, Sihan LIN1,2, and Pengfei QI1,2、*
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Microscale Optical Information Science and Technology, Tianjin 300350, China
  • show less
    References(113)

    [1] NOVOSELOV K S, GEIM A K, MOROZOV S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [2] ZHANG H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 9, 9451-9469(2015).

    [3] FRANK I, TANENBAUM D M, VAN DER ZANDE A M et al. Mechanical properties of suspended graphene sheets[J]. Journal of Vacuum Science, 25, 2558-2561(2007).

    [4] LIU K, WU J. Mechanical properties of two-dimensional materials and heterostructures[J]. Journal of Materials Research, 31, 832-844(2016).

    [5] CHHOWALLA M, SHIN H S, EDA G et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 5, 263-275(2013).

    [6] WANG Q H, KALANTAR-ZADEH K, KIS A et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 7, 699-712(2012).

    [7] BUTLER S Z, HOLLEN S M, CAO L et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene[J]. ACS Nano, 7, 2898-2926(2013).

    [9] CHEN J H, CULLEN W G, JANG C et al. Defect scattering in graphene[J]. Physical Review Letters, 102, 236805(2009).

    [10] WANG Q, MAO W, GE D et al. Effects of Ga ion-beam irradiation on monolayer graphene[J]. Applied Physics Letters, 103, 073501(2013).

    [11] KAUSHIK P D, RODNER M, LAKSHMI G et al. Surface functionalization of epitaxial graphene using ion implantation for sensing and optical applications[J]. Carbon, 157, 169-184(2020).

    [12] HAREESH K, JOSHI R P, SHATEESH B et al. Reduction of graphene oxide by 100 MeV Au ion irradiation and its application as H2O2 sensor[J]. Journal of Physics D: Applied Physics, 48, 365105(2015).

    [13] FU X, QIAO Z, ZHOU H et al. Defect engineering in transition metal dichalcogenide-based gas sensors[J]. Chemosensors, 12, 85(2024).

    [14] PEYSKENS F, CHAKRABORTY C, MUNEEB M et al. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip[J]. Nature Communications, 10, 4435(2019).

    [15] TAO H, XU S, ZHANG J et al. Improved crystal quality and enhanced optical performance of GaN enabled by ion implantation induced high-quality nucleation[J]. Optics Express, 31, 20850(2023).

    [16] SKOPINSKI L, KRETSCHMER S, ERNST P et al. Velocity distributions of particles sputtered from supported two-dimensional MoS 2 during highly charged ion irradiation[J]. Physical Review B, 107, 075418(2023).

    [17] IVEKOVIĆ D, LUKETIĆ K T, VÁZQUEZ H et al. Suspended nanoporous graphene produced by swift heavy ion bombardment[J]. Materials Chemistry Physics, 313, 128729(2024).

    [18] XU D D, VONG A F, LEBEDEV D et al. Conversion of classical light emission from a nanoparticle‐strained wse2 monolayer into quantum light emission via electron beam irradiation[J]. Advanced Materials, 35, 2208066(2023).

    [19] SUN L, BANHART F, WARNER J. Two-dimensional materials under electron irradiation[J]. MRS Bulletin, 40, 29-37(2015).

    [20] WU X, LUO X, CHENG H et al. Recent progresses on ion beam irradiation induced structure and performance modulation of two-dimensional materials[J]. Nanoscale, 15, 8925-8947(2023).

    [21] GHORBANI-ASL M, KRETSCHMER S, KRASHENINNIKOV A V[M]. Two-dimensional materials under ion irradiation: from defect production to structure and property engineering, 259-301(2022).

    [22] GEORGAKILAS V, OTYEPKA M, BOURLINOS A B et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications[J]. Chemical Reviews, 112, 6156-6214(2012).

    [23] LIU J, TANG J, GOODING J J. Strategies for chemical modification of graphene and applications of chemically modified graphene[J]. Journal of Materials Chemistry, 22, 12435-12452(2012).

    [24] RAO C N R, GOPALAKRISHNAN K, GOVINDARAJ A. Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements[J]. Nano Today, 9, 324-343(2014).

    [25] RYDER C R, WOOD J D, WELLS S A et al. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus[J]. ACS Nano, 10, 3900-3917(2016).

    [26] GOKUS T, NAIR R, BONETTI A et al. Making graphene luminescent by oxygen plasma treatment[J]. ACS Nano, 3, 3963-3968(2009).

    [27] LIN Y C, LIN C Y, CHIU P W. Controllable graphene N-doping with ammonia plasma[J]. Applied Physics Letters, 96, 133110(2010).

    [28] NOURBAKHSH A, CANTORO M, VOSCH T et al. Bandgap opening in oxygen plasma-treated graphene[J]. Nanotechnology, 21, 435203(2010).

    [29] DEY A, CHRONEOS A, BRAITHWAITE N S J et al. Plasma engineering of graphene[J]. Applied Physics Reviews, 3, 21301(2016).

    [30] LU J, LIU H, TOK E S et al. Interactions between lasers and two-dimensional transition metal dichalcogenides[J]. Chemical Society Reviews, 45, 2494-2515(2016).

    [31] YOO J H, KIM E, HWANG D J. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials[J]. MRS Bulletin, 41, 1002-1008(2016).

    [32] XIAO Y, ZHOU M, ZENG M et al. Atomic‐scale structural modification of 2D materials[J]. Advanced Science, 6, 1801501(2019).

    [33] KHOSSOSSI N, SINGH D, AINANE A et al. Recent progress of defect chemistry on 2D materials for advanced battery anodes[J]. Chemistry-An Asian Journal, 15, 3390-3404(2020).

    [34] WANG S, ROBERTSON A, WARNER J H. Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides[J]. Chemical Society Reviews, 47, 6764-6794(2018).

    [35] RHODES D, CHAE S H, RIBEIRO-PALAU R et al. Disorder in van der Waals heterostructures of 2D materials[J]. Nature materials, 18, 541-549(2019).

    [36] NAN H, WANG Z, WANG W et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding[J]. ACS Nano, 8, 5738-5745(2014).

    [37] MEYER J C, EDER F, KURASCH S et al. Accurate measurement of electron beam induced displacement cross sections for single-layer graphene[J]. Physical Review Letters, 108, 196102(2012).

    [38] PAN C T, HINKS J, RAMASSE Q M et al. In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphene[J]. Scientific Reports, 4, 6334(2014).

    [39] HAN M X, JI Z Y, SHANG L W et al. γ radiation caused graphene defects and increased carrier density[J]. Chinese Physics B, 20, 086102(2011).

    [40] LU S, LIAO F, WANG T et al. Tuning surface properties of graphene oxide quantum dots by gamma-ray irradiation[J]. Journal of Luminescence, 175, 88-93(2016).

    [41] ZHEN X, HUANG Y, YANG S et al. The effect of 500 keV proton irradiation on reduced graphene oxide paper[J]. Materials Letters, 260, 126880(2020).

    [42] ZHEN X, HUANG Y, YANG S et al. The effect of proton irradiation on the properties of a graphene oxide paper[J]. RSC Advances, 9, 30519-30525(2019).

    [44] LIN Y, SUENAGA K, BJÖRKMAN T et al. Three-fold rotational defects in two-dimensional transition metal dichalcogenides[J]. Nature Communications, 6, 6736(2015).

    [45] CHOW P K, JACOBS-GEDRIM R B, GAO J et al. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides[J]. ACS Nano, 9, 1520-1527(2015).

    [46] HE Z, ZHAO R, CHEN X et al. Defect engineering in single-layer MoS2 using heavy ion irradiation[J]. ACS Applied Materials, 10, 42524-42533(2018).

    [47] WU X, ZHENG X, ZHANG G et al. γ-Ray irradiation-induced unprecedent optical, frictional and electrostatic performances on CVD-prepared monolayer WSe2[J]. RSC Advances, 11, 22088-22094(2021).

    [48] FORAN B, MANN C, PETERSON M et al. Effects of proton radiation-induced defects on optoelectronic properties of MoS2[J]. IEEE Transactions on Nuclear Science, 66, 413-419(2018).

    [49] XIONG G, ZHU H, WANG L et al. Radiation damage and abnormal photoluminescence enhancement of multilayer MoS2 under neutron irradiation[J]. Journal of Physics: Condensed Matter, 34, 055701(2021).

    [50] DASH A K, SWAMINATHAN H, BERGER E et al. Evidence of defect formation in monolayer MoS2 at ultralow accelerating voltage electron irradiation[J]. 2D Materials, 10, 035002(2023).

    [51] ZHANG F, LU Y, SCHULMAN D S et al. Carbon doping of WS2 monolayers: Bandgap reduction and p-type doping transport[J]. Science Advances, 5, eaav5003(2019).

    [52] DU XIANG C H, WU J, ZHONG S et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus[J]. Nature Communications, 6, 6485(2015).

    [53] GONG Y, YUAN H, WU C L et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics[J]. Nature Nanotechnology, 13, 294-299(2018).

    [54] RIMINI E. Ion implantation: basics to device fabrication[M]. Springer Science & Business Media(1994).

    [55] JONES R, YU K, LI S et al. Evidence for p-type doping of InN[J]. Physical Review Letters, 96, 125505(2006).

    [56] RONNING C, BORSCHEL C, GEBURT S et al. Ion beam doping of semiconductor nanowires[J]. Materials Science Engineering: R: Reports, 70, 30-43(2010).

    [57] GUPTA H, SINGH J, DUTT R et al. Defect-induced photoluminescence from gallium-doped zinc oxide thin films: influence of doping and energetic ion irradiation[J]. Physical Chemistry Chemical Physics, 21, 15019-15029(2019).

    [58] BANGERT U, BLELOCH A, GASS M et al. Doping of few-layered graphene and carbon nanotubes using ion implantation[J]. Physical Review B—Condensed Matter Materials Physics, 81, 245423(2010).

    [59] BANGERT U, PIERCE W, KEPAPTSOGLOU D et al. Ion implantation of graphene toward ic compatible technologies[J]. Nano Letters, 13, 4902-4907(2013).

    [60] WILLKE P, AMANI J A, SINTERHAUF A et al. Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties[J]. Nano Letters, 15, 5110-5115(2015).

    [61] WU X, ZHAO H, YAN D et al. Doping of graphene using ion beam irradiation and the atomic mechanism[J]. Computational Materials Science, 129, 184-193(2017).

    [62] HAN S W, YUN W S, KIM H et al. Hole doping effect of MoS2 via electron capture of He+ ion irradiation[J]. Scientific Reports, 11, 23590(2021).

    [63] LIANG H, ZHENG Y, LOH L et al. Robust n-type doping of WSe2 enabled by controllable proton irradiation[J]. Nano Research, 16, 1220-1227(2023).

    [64] SHANG Z, TAN Y, ZHOU S et al. Layer-to-layer compression and enhanced optical properties of few-layer graphene nanosheet induced by ion irradiation[J]. Optical Engineering, 55, 081303(2016).

    [65] YASEIN M, EISSA M, EL-FAYOUMI M et al. Studying the effect of low doses of gamma and beta irradiations on graphene oxide samples[J]. Radiation Physics Chemistry, 173, 108941(2020).

    [66] EISSA M, ROUBY W MEL. Effect of alpha particle irradiations on the structural properties of graphene oxide[J]. International Journal of Modern Physics B, 32, 1850343(2018).

    [67] WANG D, WANG Y, CHEN X et al. Layer-by-layer thinning of two-dimensional MoS2 films by using a focused ion beam[J]. Nanoscale, 8, 4107-4112(2016).

    [68] OCHEDOWSKI O, BUKOWSKA H, SOLER V M F et al. Folding two dimensional crystals by swift heavy ion irradiation[J]. Nuclear Instruments, 340, 39-43(2014).

    [69] MADAUSS L, OCHEDOWSKI O, LEBIUS H et al. Defect engineering of single-and few-layer MoS2 by swift heavy ion irradiation[J]. 2D Materials, 4, 015034(2016).

    [70] HERBIG C, ÅHLGREN E H, SCHRÖDER U A et al. Xe irradiation of graphene on Ir (111): From trapping to blistering[J]. Physical Review B, 92, 085429(2015).

    [71] PANDEY M, AHUJA R, KUMAR R. Electron beam irradiation-induced atomically thin domes of two-dimensional materials: Graphene and MoS2[J]. Surfaces Interfaces, 51, 104654(2024).

    [72] WOO S O, TEIZER W. Effects of electron beam induced redox processes on the electronic transport in graphene field effect transistors[J]. Carbon, 93, 693-701(2015).

    [73] OCHEDOWSKI O, MARINOV K, WILBS G et al. Radiation hardness of graphene and MoS2 field effect devices against swift heavy ion irradiation[J]. Journal of Applied Physics, 113, 214306(2013).

    [74] KUMAR S, KUMAR A, TRIPATHI A et al. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation[J]. Journal of Applied Physics, 123, 161533(2018).

    [75] ZENG J, LIU J, ZHANG S et al. Graphene electrical properties modulated by swift heavy ion irradiation[J]. Carbon, 154, 244-253(2019).

    [76] RATAN A, KUNCHAKARA S, DUTT M et al. Enhanced electrical properties of few layers MoS2-PVA nanocomposite film via homogeneous dispersion and annealing effect induced by 80áMeV Carbon6+ swift heavy ion irradiation[J]. Materials Science in Semiconductor Processing, 108, 104877(2020).

    [77] TANG B, ZHAO Y, ZHOU C et al. Threshold voltage modulation in monolayer MoS2 field-effect transistors via selective gallium ion beam irradiation[J]. Science China Materials, 65, 741-747(2022).

    [78] STANFORD M G, PUDASAINI P R, BELIANINOV A et al. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions[J]. Scientific Reports, 6, 27276(2016).

    [79] LIU Y, GAO Z, TAN Y et al. Enhancement of out-of-plane charge transport in a vertically stacked two-dimensional heterostructure using point defects[J]. ACS Nano, 12, 10529-10536(2018).

    [80] LIU Y, LIU Y, ZHOU H et al. Defect engineering of out-of-plane charge transport in van der Waals heterostructures for Bi-direction photoresponse[J]. ACS Nano, 15, 16572-16580(2021).

    [81] GUO Z, ZENG Y, MENG F et al. In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor[J]. eLight, 2, 9(2022).

    [82] KIM T Y, CHO K, PARK W et al. Irradiation effects of high-energy proton beams on MoS2 field effect transistors[J]. ACS Nano, 8, 2774-2781(2014).

    [83] FOX D S, ZHOU Y, MAGUIRE P et al. Nanopatterning and electrical tuning of MoS2 layers with a subnanometer helium ion beam[J]. Nano Letters, 15, 5307-5313(2015).

    [84] MACKOVÁ A, MALINSKY P, JAGEROVÁ A et al. Modification of MoS2 structure by means of high energy ions in connection to electrical properties and light element surface adsorption[J]. Surfaces Interfaces, 17, 100357(2019).

    [85] ARNOLD A J, SHI T, JOVANOVIC I et al. Extraordinary radiation hardness of atomically thin MoS2[J]. ACS Applied Materials Interfaces, 11, 8391-8399(2019).

    [86] ZHANG Y, CHEN X, WANG H et al. Electronic properties of multilayer MoS2 field effect transistor with unique irradiation resistance[J]. The Journal of Physical Chemistry C, 125, 2089-2096(2021).

    [87] BURNS K, TAN A M Z, GABRIEL A et al. Controlling neutral and charged excitons in MoS2 with defects[J]. Journal of Materials Research, 35, 949-957(2020).

    [88] GUPTA D, CHAUHAN V, UPADHYAY S et al. Defects engineering and enhancement in optical and structural properties of 2D-MoS2 thin films by high energy ion beam irradiation[J]. Materials Chemistry Physics, 276, 125422(2022).

    [89] CHAUHAN V, GUPTA T, KORATKAR N et al. Studies of the electronic excitation modifications induced by SHI of Au ions in RF sputtered ZrO2 thin films[J]. Materials Science in Semiconductor Processing, 88, 262-272(2018).

    [90] CHEN R, LIU G, QIU F et al. Self-powered waveguide-integrated photodetector based on a defect-engineered WSe2/graphene heterojunction[J]. Optical Materials Express, 12, 3614-3620(2022).

    [91] LIEN D H, UDDIN S Z, YEH M et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors[J]. Science, 364, 468-471(2019).

    [92] DHALL R, SEYLER K, LI Z et al. Strong circularly polarized photoluminescence from multilayer MoS2 through plasma driven direct-gap transition[J]. ACS Photonics, 3, 310-314(2016).

    [93] FELIX J F, SILVA A FDA, SILVA S W D A et al. A comprehensive study on the effects of gamma radiation on the physical properties of a two-dimensional WS2 monolayer semiconductor[J]. Nanoscale Horizons, 5, 259-267(2020).

    [94] WU Z, NI Z. Spectroscopic investigation of defects in two-dimensional materials[J]. Nanophotonics, 6, 1219-1237(2017).

    [95] ZHANG S, HILL H M, MOUDGIL K et al. Controllable, wide‐ranging n‐doping and p‐doping of monolayer group 6 transition‐metal disulfides and diselenides[J]. Advanced Materials, 30, 1802991(2018).

    [96] SARCAN F, FAIRBAIRN N J, ZOTEV P et al. Understanding the impact of heavy ions and tailoring the optical properties of large-area monolayer WS2 using focused ion beam[J]. npj 2D Materials Applications, 7, 23(2023).

    [97] SHLIMAK I, ZION E, BUTENKO A et al. Hopping magnetoresistance in ion irradiated monolayer graphene[J]. Physica E: Low-dimensional Systems Nanostructures, 76, 158-163(2016).

    [98] ANBALAGAN A K, HU F C, CHAN W K et al. Gamma-ray irradiation induced ultrahigh room-temperature ferromagnetism in MoS2 sputtered few-layered thin films[J]. ACS Nano, 17, 6555-6564(2023).

    [99] LÓPEZ-POLÍN G, GÓMEZ-NAVARRO C, PARENTE V et al. Increasing the elastic modulus of graphene by controlled defect creation[J]. Nature Physics, 11, 26-31(2015).

    [100] SONG Z, XU Z. Geometrical effect ‘stiffens’ graphene membrane at finite vacancy concentrations[J]. Extreme Mechanics Letters, 6, 82-87(2016).

    [101] ANNAMALAI M, MATHEW S, CHAN T K et al. Tailoring mechanical properties of suspended graphene by energetic ion beams[C](2018).

    [102] LIU K, HSIN C L, FU D et al. Self-passivation of defects: effects of high-energy particle irradiation on the elastic modulus of multilayer graphene[J]. Advanced Materials, 27, 6841-6847(2015).

    [103] WU X, ZHU X, LEI B. Impact of ion beam irradiation on two-dimensional MoS2: A molecular dynamics simulation study[J]. Journal of Physics: Condensed Matter, 34, 055402(2021).

    [104] TUBOLTSEV V, RÄISÄNEN J. Sculpturing nanowires with ion beams[J]. Small, 5, 2687-2691(2009).

    [105] BARDEEN J, SHOCKLEY W. Deformation potentials and mobilities in non-polar crystals[J]. Physical Review, 80, 72(1950).

    [106] LIU X, SACHAN A K, HOWELL S T et al. Thermomechanical nanostraining of two-dimensional materials[J]. Nano Letters, 20, 8250-8257(2020).

    [107] DU S, GUO Y, HUANG X et al. Strain lithography for two-dimensional materials by electron irradiation[J]. Applied Physics Letters, 120, 093104(2022).

    [108] XIA F, MUELLER T, LIN Y. m, Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 4, 839-843(2009).

    [109] MUELLER T, XIA F, AVOURIS P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 4, 297-301(2010).

    [110] TAN Y, GUO Z, SHANG Z et al. Tailoring nonlinear optical properties of Bi2Se3 through ion irradiation[J]. Scientific Reports, 6, 21799(2016).

    [111] LI H, LIU C, ZHANG Y et al. Effects of N‐ion implantation on the electrical and photoelectronic properties of MoS2 field effect transistors[J]. Physica Status Solidi, 219, 2100551(2022).

    [112] COMPTON O C, NGUYEN S T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials[J]. Small, 6, 711-723(2010).

    [113] SINGH F, GOYAL R N. Structural and electrochemical characterization of carbon ion beam irradiated reduced graphene oxide and its application in voltammetric determination of norepinephrine[J]. RSC Advances, 5, 87504-87511(2015).

    [114] CHEN S, WANG C, CAI H et al. Realization of single-photon emitters with high brightness and high stability and excellent monochromaticity[J]. Matter, 7, 1106-1116(2024).

    [115] KLEIN J, LORKE M, FLORIAN M et al. Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation[J]. Nature Communications, 10, 2755(2019).

    Tools

    Get Citation

    Copy Citation Text

    Tengteng GAO, Wenqi QIAN, Haiyi LIU, Xueying WANG, Fangxun LIU, Sihan LIN, Pengfei QI. Mechanism and Application of Ionizing Radiation in Modulating the Physical Properties of Two-dimensional Materials(Invited)[J]. Acta Photonica Sinica, 2024, 53(10): 1053403

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for“the 40th Anniversary of Institute of Modern Optics Nankai University”

    Received: Jul. 16, 2024

    Accepted: Sep. 29, 2024

    Published Online: Dec. 5, 2024

    The Author Email: Pengfei QI (qipengfei@nankai.edu.cn)

    DOI:10.3788/gzxb20245310.1053403

    Topics