Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1037002(2024)

Image Super-Resolution Reconstruction Algorithm Based on Adaptive Two-Branch Block

Yan Zhang, Minglei Sun, Yemei Sun*, and Fujie Xu
Author Affiliations
  • School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China
  • show less
    Figures & Tables(14)
    Network of image super-resolution reconstruction based on adaptive two-branch
    Adaptive two-branch block
    Decomposition process of the large kernel convolution
    Channel shuffle coordinate attention block
    Double-layer residual aggregation block
    Effect comparison of output feature maps
    Reconstruction effect comparison of Urban100_012 at ×2 magnification
    Reconstruction effect comparison of Urban100_092 at ×3 magnification
    Reconstruction effect comparison of Urban100_033 at ×4 magnification
    • Table 1. Results of ablation study

      View table

      Table 1. Results of ablation study

      MethodATBCSCABDRABPSNR /dB(SSIM)
      Model 1×××30.87(0.9150)
      Model 2××32.08(0.9278)
      Model 3××32.03(0.9274)
      Model 4××31.98(0.9269)
      Model 5×32.280.9299
      Model 6(ATSR)32.44(0.9308)
    • Table 2. Performance of the proposed algorithm before and after large kernel convolutional decomposition

      View table

      Table 2. Performance of the proposed algorithm before and after large kernel convolutional decomposition

      MethodParams /103PSNR /dB(SSIM)
      Set14Urban100
      Before decomposition1108933.75(0.9191)32.34(0.9302)
      After decomposition130833.82(0.9193)32.44(0.9308)
    • Table 3. Influence of number of RB on the performance of the proposed algorithm

      View table

      Table 3. Influence of number of RB on the performance of the proposed algorithm

      Res module No.Params /103PSNR /dB(SSIM)
      Set14Urban100
      296733.63(0.9179)32.16(0.9286)
      3112133.66(0.9181)32.17(0.9287)
      4130833.82(0.9193)32.44(0.9308)
      5161233.80(0.9188)32.48(0.9312)
    • Table 4. Peformance of different algorithms on each dataset

      View table

      Table 4. Peformance of different algorithms on each dataset

      MethodScalePSNR /dB(SSIM)
      Set5Set14Urban100BSD100Manga109
      VDSR6×237.53(0.9590)33.05(0.9130)30.77(0.9140)31.90(0.8960)37.22(0.9750)
      CARN737.76(0.9590)33.52(0.9166)31.92(0.9256)32.09(0.8978)38.36(0.9765)
      IMDN2538.00(0.9605)33.63(0.9177)32.17(0.9283)32.19(0.8996)38.88(0.9774)
      SRMDNF2637.79(0.9601)33.32(0.9159)31.33(0.9204)32.05(0.8985)38.07(0.9761)
      SMSR2738.00(0.9601)33.64(0.9179)32.19(0.9284)32.17(0.8990)38.76(0.9771)
      PAN1338.00(0.9605)33.59(0.9181)32.01(0.9273)32.18(0.8997)38.70(0.9773)
      ARRFN2838.01(0.9606)33.66(0.9179)32.27(0.9295)32.20(0.8999)
      PDAN2938.05(0.960733.65(0.9182)32.36(0.9300)32.20(0.8998)38.71(0.9771)
      A2N1438.06(0.9608)33.75(0.9194)32.43(0.9311)32.22(0.900238.87(0.9769)
      DRSDN3038.06(0.960733.65(0.9189)32.40(0.930832.23(0.9003)
      LESR3138.07(0.9606)33.80(0.9194)32.42(0.930832.24(0.9000)38.96(0.9776)
      ATSR38.11(0.9608)33.82(0.919332.44(0.930832.24(0.8996)38.940.9775
      VDSR6×333.67(0.9210)29.78(0.832027.14(0.8290)28.83(0.7990)32.01(0.9340)
      CARN734.29(0.9255)30.29(0.8407)28.06(0.8493)29.06(0.8034)33.50(0.9440)
      IMDN2534.36(0.9270)30.32(0.8417)28.17(0.8519)29.09(0.8046)33.61(0.9445)
      SRMDNF2634.12(0.9254)30.04(0.8382)27.57(0.8398)28.97(0.8025)33.00(0.9403)
      SMSR2734.40(0.9270)30.33(0.8412)28.25(0.8536)29.10(0.8050)33.68(0.9445)
      PAN1334.40(0.9271)30.36(0.8423)28.11(0.8511)29.11(0.8050)33.61(0.9448)
      ARRFN2834.38(0.9272)30.36(0.8422)28.22(0.8533)29.09(0.8050)
      PDAN2934.44(0.9276)30.39(0.8437)28.34(0.8563)29.11(0.806333.63(0.9448)
      A2N1434.47(0.9279)30.44(0.8437)28.41(0.8570)29.14(0.8059)33.780.9458
      DRSDN3034.48(0.928230.41(0.8445)28.450.858929.17(0.8072)
      LESR3134.49(0.9278)30.42(0.8431)28.39(0.8567)29.13(0.8059)33.76(0.9455)
      ATSR34.53(0.9283)30.50(0.844128.54(0.8593)29.18(0.8060)33.93(0.9463)
      VDSR6×431.35(0.8830)28.02(0.7680)25.18(0.7540)27.29(0.7260)28.83(0.8870)
      CARN732.13(0.8937)28.60(0.7806)26.07(0.7837)27.58(0.7349)30.47(0.9084)
      IMDN2532.21(0.8948)28.58(0.7811)26.04(0.7838)27.56(0.7353)30.45(0.9075)
      SRMDNF2631.96(0.8925)28.35(0.7787)25.68(0.7731)27.49(0.7337)30.09(0.9024)
      SMSR2732.12(0.8932)28.55(0.7808)26.11(0.7868)27.55(0.7351)30.54(0.9085)
      PAN1332.13(0.8948)28.61(0.7822)26.11(0.7854)27.59(0.7363)30.51(0.9095)
      ARRFN2832.22(0.8952)28.60(0.7817)26.09(0.7858)27.57(0.7355)
      PDAN2932.28(0.8957)28.66(0.7831)26.27(0.7922)27.62(0.737830.64(0.9098)
      A2N1432.300.896628.71(0.7842)26.27(0.7920)27.61(0.7374)30.67(0.9110)
      DRSDN3032.28(0.8962)28.64(0.783626.300.793327.64(0.7388)
      LESR3132.28(0.8952)28.65(0.7827)26.25(0.7908)27.61(0.7365)30.68(0.9100
      ATSR32.34(0.8973)28.75(0.7832)26.37(0.7934)27.66(0.7370)30.69(0.9089)
    • Table 5. Comparison of different parameters of different algorithms

      View table

      Table 5. Comparison of different parameters of different algorithms

      MethodParams /103PSNR /dBSSIM
      SRMDNF26155231.960.8925
      CARN7159232.130.8937
      ARRFN28100832.220.8952
      PDAN29158732.280.8957
      DRSDN30109532.280.8962
      LESR31102032.280.8952
      ATSR140332.340.8973
    Tools

    Get Citation

    Copy Citation Text

    Yan Zhang, Minglei Sun, Yemei Sun, Fujie Xu. Image Super-Resolution Reconstruction Algorithm Based on Adaptive Two-Branch Block[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1037002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Aug. 29, 2023

    Accepted: Oct. 30, 2023

    Published Online: May. 6, 2024

    The Author Email: Yemei Sun (sunyemei1216@163.com)

    DOI:10.3788/LOP232007

    CSTR:32186.14.LOP232007

    Topics