Remote Sensing Technology and Application, Volume. 40, Issue 4, 783(2025)
Research Progress of Remote Sensing Change Detection based on Deep Learning: Pixel-level, Object-level, and Scene-level
[1] [1] ZHANGZuxun, JIANGHuiwei, PANGShiyan, et al. Review and prospect in change detection of multi-temporal remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107.
[2] [2] ZHANGLiangpei, WUChen. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1447-1459.
[3] [3] SINGHA. Review Article Digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing,1989,10(6):989-1003.
[4] [4] LIDeren. Change detection from remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2003, 28(Sup.1):7-12.
[5] [5] DENGC B, ZHUZ. Continuous subpixel monitoring of urban impervious surface using Landsat time series[J]. Remote Sensing of Environment,2020,238:110929. DOI:10.1016/j.rse.2018.10.011
[6] [6] CAOY X, HUANGX. A full-level fused cross-task transfer learning method for building change detection using noise-robust pretrained networks on crowdsourced labels[J]. Remote Sensing of Environment, 2023, 284: 113371. DOI: 10.1016/j.rse.2022.113371
[7] [7] XIAOP F,SHENGG W,ZHANGX L,et al.Direction-dominated change vector analysis for forest change detection[J].International Journal of Applied Earth Observation and Geoinformation,2021,103:102492. DOI:10.1016/j.jag. 2021. 102492
[8] [8] PELLETIERF, CARDILLEJ A, WULDERM A, et al. Inter- and intra-year forest change detection and monitoring of aboveground biomass dynamics using Sentinel-2 and Landsat[J]. Remote Sensing of Environment, 2024, 301: 113931. DOI: 10.1016/j.rse.2023.113931
[9] [9] WANGX, FANX M, XUQ, et al. Change detection-based co-seismic landslide mapping through extended morphological profiles and ensemble strategy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187: 225-239. DOI: 10.1016/j.isprsjprs.2022.03.011
[10] [10] YANGC H, WANGX, GUOS C, et al. Mapping co-seismic landslides in vegetated areas by incorporating tri-temporal logical information in change detection method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4706019. DOI: 10.1109/TGRS.2024.3427145
[11] [11] JIShunping, TIANSiqi, ZHANGChi. Urban Land Cover Classification and change detection using fully atrous convolutional neural network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 233-241.
[12] [12] WANGChao, WANGShuai, CHENXiao, et al. Object-level change detection of multi-sensor optical remote sensing images combined with UNet++ and multi-level difference module[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 283-296.
[13] [13] HEH X, YANJ N, LIANGD, et al. Time-series land cover change detection using deep learning-based temporal semantic segmentation[J]. Remote Sensing of Environment, 2024, 305: 114101. DOI: 10.1016/j.rse.2024.114101
[14] [14] LIUT, YANGL X, LUNGAD. Change detection using deep learning approach with object-based image analysis[J]. Remote Sensing of Environment, 2021, 256: 112308. DOI: 10.1016/j.rse.2021.112308
[15] [15] WANGY, DUB, RUL X, et al. Scene change detection VIA deep convolution canonical correlation analysis neural network[C]∥Proceedings of the IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019: 198-201.. DOI: 10.1109/igarss.2019.8898211
[16] [16] WUC, ZHANGL F, ZHANGL P. A scene change detection framework for multi-temporal very high resolution remote sensing images[J]. Signal Processing, 2016, 124: 184-197. DOI: 10.1016/j.sigpro.2015.09.020
[17] [17] WUC, DUB, ZHANGL P. Fully convolutional change detection framework with generative adversarial network for unsupervised, weakly supervised and regional supervised change detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9774-9788. DOI: 10.1109/TPAMI.2023.3237896
[18] [18] FANGH, GUOS C, WANGX, et al. Automatic urban scene-level binary change detection based on a novel sample selection approach and advanced triplet neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5601518. DOI: 10.1109/TGRS.2023.3235917
[19] [19] LIUR C, JIANGD W, ZHANGL L, et al. Deep depthwise separable convolutional network for change detection in optical aerial images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:1109-1118. DOI:10.1109/JSTARS.2020.2974276
[20] [20] PENGD F,ZHANGY J,GUANH Y. End-To-End change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11): 1382. DOI: 10.3390/rs11111382
[21] [21] JIANGY, HUL, ZHANGY M, et al. WRICNet: A weighted rich-scale inception coder network for remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4705313. DOI: 10.1109/TGRS.2022.3145652
[22] [22] LÜZ Y, HUANGH T, GAOL P, et al. Simple multiscale UNet for change detection with heterogeneous remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 2504905. DOI: 10.1109/LGRS.2022.3173300
[23] [23] LIUF, LIUY G, LIUJ, et al. Candidate-aware and change-guided learning for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5624919. DOI: 10.1109/TGRS.2024.3400215
[24] [24] ZHENGZ, ZHONGY F, TIANS Q, et al. ChangeMask: Deep multi-task encoder-transformer-decoder architecture for semantic change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183: 228-239. DOI: 10.1016/j.isprsjprs.2021.10.015
[25] [25] JINGW, CHIK C, LIQ, et al. ChangeRD: A registration-integrated change detection framework for unaligned remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2025,220:64-74. DOI:10.1016/j.isprsjprs. 2024.11.019
[26] [26] GAOJianwen, GUANHaiyan, PENGDaifeng, et al. Local-global semantic feature enhancement model for remote sensing imagery change detection[J]. Journal of Geo-Information Science, 2023, 25(3): 625-637.
[27] [27] ZHAOXiang, WANGTao, ZHANGYan, et al. Remote sensing image change detection based on improved DeepLabv3+ Siamese network[J]. Journal of Geo-Information Science, 2022, 24(8): 1604-1616.
[28] [28] ZHAOX Y,ZHAOK Y,LIS Y,et al.GeSANet:Geospatial-awareness network for VHR remote sensing image change detection[J].IEEE Transactions on Geoscience and Remote Sen-sing,2023,61:5402814. DOI:10.1109/TGRS.2023.3272550
[29] [29] XUX T, YANGZ, LIJ J. AMCA: Attention-guided multiscale context aggregation network for remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,61:5908619. DOI:10.1109/TGRS. 2023.3272006
[30] [30] ZHANGM W, LIQ, MIAOY L, et al. Difference-guided aggregation network with multiimage pixel contrast for change detection[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,61:5611114. DOI:10.1109/TGRS. 2023. 3278739
[31] [31] LIUS B, ZHAOD X, ZHOUY H, et al. Full-scale change detection network for remote sensing images based on deep feature fusion[J]. IEEE Transactions on Geoscience and Remote Sensing,2025,63:5617113. DOI:10.1109/TGRS. 2025.3555171
[32] [32] CHENY X, NINGX G, ZHANGR Q, et al. ESMII-Net: An edge-synergy and multidimensional information interaction network for remote sensing change detection[J]. International Journal of Applied Earth Observation and Geoinformation, 2025, 139: 104507. DOI: 10.1016/j.jag.2025.104507
[33] [33] CHENH, WUC, DUB, et al. Change detection in multisource VHR images via deep Siamese convolutional multiple-layers recurrent neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2848-2864. DOI: 10.1109/TGRS.2019.2956756
[34] [34] ZHANGC X, YUEP, TAPETED, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183-200. DOI: 10.1016/j.isprsjprs.2020.06.003
[35] [35] LIANGZheheng, LIXiao, DENGPeng, et al. Remote sensing image change detection fusion method integrating multi-scale feature attention[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676.
[36] [36] QIANS Y, XUEZ H, JIAM M, et al. Temporal-spectral-semantic-aware convolutional transformer network for multi-class tidal wetland change detection in Greater Bay Area[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 216: 126-141. DOI: 10.1016/j.isprsjprs.2024.07.024
[37] [37] JINGW, BAIH C, SONGB B, et al. HeteCD: Feature consistency alignment and difference mining for heterogeneous remote sensing image change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2025, 223: 317-327. DOI: 10.1016/j.isprsjprs.2025.03.008
[38] [38] HOUX, BAIY P, LIY, et al. High-resolution triplet network with dynamic multiscale feature for change detection on satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2021,177:103-115. DOI:10.1016/j.isprs-jprs.2021.05.001
[39] [39] ZHAOY, CHENP, CHENZ C, et al. A triple-stream network with cross-stage feature fusion for high-resolution image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,61:5600417. DOI:10.1109/TGRS. 2022.3233849
[40] [40] LÜZ Y, YANGT, ZHONGP D, et al. Hierarchical feature fusion triple network for change detection with bitemporal remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4401512. DOI: 10.1109/TGRS.2025.3525811
[41] [41] SAHAS, BOVOLOF, BRUZZONEL. Unsupervised deep change vector analysis for multiple-change detection in VHR images[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(6):3677-3693. DOI:10.1109/TGRS. 2018.2886643
[42] [42] ZHANT, GONGM G, JIANGX M, et al. Unsupervised scale-driven change detection with deep spatial–spectral features for VHR images[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(8):5653-5665. DOI:10.1109/TGRS.2020.2968098
[43] [43] CHENQ, YUEP, XUY J, et al. Feature-selection-based unsupervised transfer learning for change detection from VHR optical images[J].Remote Sensing,2024,16(18):3507. DOI: 10.3390/rs16183507
[44] [44] SAHAS,MOUL C,QIUC P,et al. Unsupervised deep joint segmentation of multitemporal high-resolution images[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(12):8780-8792. DOI:10.1109/TGRS.2020.2990640
[45] [45] WUC, CHENH, DUB, et al. Unsupervised change detection in multitemporal VHR images based on deep Kernel PCA convolutional mapping network[J]. IEEE Transactions on Cybernetics,2022,52(11):12084-12098. DOI:10.1109/TCYB. 2021.3086884
[46] [46] ZHANGXinlong, CHENXiuwan, LIFei, et al. Change detection method for high resolution remote sensing images using deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8): 999-1008.
[47] [47] GONGM G, YANGY L, ZHANT, et al. A generative discriminatory classified network for change detection in multispectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(1): 321-333. DOI: 10.1109/JSTARS.2018.2887108
[48] [48] DUB, RUL X, WUC, et al. Unsupervised deep slow feature analysis for change detection in multi-temporal remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9976-9992. DOI: 10.1109/TGRS.2019.2930682
[49] [49] GONGM G, YANGH L, ZHANGP Z. Feature learning and change feature classification based on deep learning for ternary change detection in SAR images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129: 212-225. DOI: 10.1016/j.isprsjprs.2017.05.001
[50] [50] FANGH, DUP J, WANGX. A novel unsupervised binary change detection method for VHR optical remote sensing imagery over urban areas[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 108: 102749. DOI: 10.1016/j.jag.2022.102749
[51] [51] LIQ X, MUT K, TUNIYAZIA, et al. Progressive pseudo-label framework for unsupervised hyperspectral change detection[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 127: 103663. DOI: 10.1016/j.jag.2024.103663
[52] [52] TANGX, ZHANGH Y, MOUL C, et al. An unsupervised remote sensing change detection method based on multiscale graph convolutional network and metric learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5609715. DOI: 10.1109/TGRS.2021.3106381
[53] [53] LIQ X, GONGH, DAIH S, et al. Unsupervised hyperspectral image change detection via deep learning self-generated credible labels[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9012-9024.
[54] [54] CHENL S,LIS H,ZHUE Y.An object-based change detection method considering temporal-spatial similarity in long time series[J]. IEEE Transactions on Geoscience and Remote Sensing,2025,63:4503910. DOI:10.1109/TGRS. 2025. 3544094
[55] [55] WANGM Y, TANK, JIAX P, et al. A deep Siamese network with hybrid convolutional feature extraction module for change detection based on multi-sensor remote sensing images[J]. Remote Sensing, 2020, 12(2): 205. DOI: 10.3390/rs12020205
[56] [56] LEIY, LIUX D, SHIJ, et al. Multiscale superpixel segmentation with deep features for change detection[J]. IEEE Access, 2019, 7: 36600-36616.
[57] [57] FENGWenqing, ZHANGYongjun. Object-oriented change detection for remote sensing images based on multiscale fusion[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1142-1151.
[58] [58] LIUXuanguang, LIMengmeng, WANGXiaoqin, et al. Use of object-based Siamese neural network to build change detection from very high resolution remote-sensing images[J]. National Remote Sensing Bulletin, 2024, 28(2): 437-454.
[59] [59] GONGM G, ZHANT, ZHANGP Z, et al. Superpixel-based difference representation learning for change detection in multispectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2658-2673. DOI: 10.1109/TGRS.2017.2650198
[60] [60] ZHANGX Z, LIUG, ZHANGC, et al. Two-phase object-based deep learning for multi-temporal SAR image change detection[J]. Remote Sensing, 2020, 12(3): 548. DOI: 10.3390/rs12030548
[61] [61] ZHANGH, LIUW, NIUH, et al. Land cover change detection based on vector polygons and deep learning with high-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,62:4402218. DOI:10. 1109/tgrs.2023.3346958
[62] [62] LIUJ L, ZHOUW X, GUANH Y, et al. Similarity learning for land use scene-level change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 6501-6513.
[63] [63] ZHOUWeixun,LIUJinglei,PENGDaifeng,et al. MtSCCD: Land-use scene classification and change-detection dataset for deep learning[J]. National Remote Sensing Bulletin, 2024, 28(2): 321-333.
[64] [64] RUL X, DUB, WUC. Multi-temporal scene classification and scene change detection with correlation based fusion[J]. IEEE Transactions on Image Processing, 2020, 30: 1382-1394. DOI: 10.1109/TIP.2020.3039328
[65] [65] FANGH,GUOS C,LINC,et al. Scene-level change detection by integrating VHR images and POI data using a multiple-branch fusion network[J].Remote Sensing Letters,2023, 14(8): 808-820. DOI: 10.1080/2150704X.2023.2242588
[66] [66] SHIS N, ZHONGY F, LIUY H, et al. Cross-temporal high spatial resolution urban scene classification and change detection based on a class-weighted deep adaptation network[J]. Urban Informatics,2024,3(1):3. DOI:10.1007/s44212-023-00029-1
[67] [67] XIEF, LIAOZ P, TANJ B, et al. MSFCN: A multiscale feature correlation network for remote sensing image scene change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 8275-8299.
[68] [68] ZHOUW X, LIUJ L, HUANGX, et al. Monitoring scene-level land use changes with similarity-assisted change detection network[J]. International Journal of Remote Sensing, 2025,46(4):1594-1621. DOI:10.1080/01431161. 2024. 2433758
[69] [69] RUL X, WUC, DUB, et al. Deep canonical correlation analysis network for scene change detection of multi-temporal VHR imagery[C]∥Proceedings of the 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). IEEE, 2019: 1-4. DOI: 10.1109/Multi-Temp.2019.8866943
[70] [70] FANGH, GUOS C, ZHANGP, et al. Scene change detection by differential aggregation network and class probability-based fusion strategy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5406918. DOI: 10.1109/TGRS.2023.3317701
[71] [71] WANGJ, ZHONGY F, ZHANGL P. Contrastive scene change representation learning for high-resolution remote sensing scene change detection[J]. IEEE Transactions on Geoscience and Remote Sensing,2024,62:5618118. DOI: 10.1109/TGRS.2024.3370556
[72] [72] NIELSENA A, CONRADSENK, SIMPSONJ J. Multivariate Alteration Detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies[J]. Remote Sensing of Environment, 1998, 64(1): 1-19. DOI: 10.1016/S0034-4257(97)00162-4
[73] [73] NIELSENA A. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data[J]. IEEE Transactions on Image Processing, 2007, 16(2): 463-478. DOI: 10.1109/tip.2006.888195
[74] [74] CELIKT. Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 772-776. DOI: 10.1109/LGRS.2009.2025059
[75] [75] WUC, DUB, ZHANGL P. Slow feature analysis for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2858-2874. DOI: 10.1109/TGRS.2013.2266673
[77] [77] HEK M,ZHANGX Y,RENS Q,et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2016:770-778. DOI:10.1109/CVPR.2016.90
[78] [78] HUANGG, LIUZ, VAN DER MAATENL, et al. Densely connected convolutional networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 2261-2269. DOI: 10.1109/CVPR.2017.243
[79] [79] HOWARDA, SANDLERM, CHENB, et al. Searching for MobileNetV3[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019: 1314-1324.. DOI: 10.1109/iccv.2019.00140
[80] [80] ZHANY, FUK, YANM L, et al. Change detection based on deep Siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1845-1849. DOI: 10.1109/LGRS.2017.2738149
[81] [81] GAOY H, GAOF, DONGJ Y, et al. SAR image change detection based on multiscale capsule network[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 484-488. DOI: 10.1109/LGRS.2020.2977838
Get Citation
Copy Citation Text
Peijun DU, Hong FANG, Shanchuan GUO, Chenghan YANG, Pengfei TANG. Research Progress of Remote Sensing Change Detection based on Deep Learning: Pixel-level, Object-level, and Scene-level[J]. Remote Sensing Technology and Application, 2025, 40(4): 783
Category:
Received: Jan. 2, 2025
Accepted: --
Published Online: Aug. 26, 2025
The Author Email: Peijun DU (peijun@nju.edu.cn)