Chinese Journal of Lasers, Volume. 47, Issue 3, 304001(2020)
Experimental Demonstration of Light Narrowing Effect Based on Free Atomic Spin Precession
[1] Gómez C, Hornero R, Abásolo D et al. Analysis of the magnetoencephalogram background activity in Alzheimer's disease patients with auto-mutual information[J]. Computer Methods and Programs in Biomedicine, 87, 239-247(2007).
[2] Sternickel K, Braginski A I. Biomagnetism using SQUIDs: status and perspectives[J]. Superconductor Science and Technology, 19, S160-S171(2006).
[3] Groeger S, Bison G, Knowles P E et al. Laser-pumped cesium magnetometers for high-resolution medical and fundamental research[J]. Sensors and Actuators A: Physical, 129, 1-5(2006).
[5] Xu S J, Crawford C W, Rochester S et al. Submillimeter-resolution magnetic resonance imaging at the Earth's magnetic field with an atomic magnetometer[J]. Physical Review A, 78, 013404(2008).
[6] Sarma B S P, Verma B K, Satyanarayana S V. Magnetic mapping of Majhgawan diamond pipe of central India[J]. Geophysics, 64, 1735-1739(1999).
[7] Mende S B, Harris S E, Frey H U et al. The THEMIS array of ground-based observatories for the study of auroral substorms[M]. //Burch J L, Angelopoulos V. The THEMIS mission. New York, NY: Springer, 357-387(2009).
[8] Russell C T, Chi P J, Dearborn D J et al. THEMIS ground-based magnetometers[J]. Space Science Reviews, 141, 389-412(2008).
[9] Turkakin H, Marchand R, Kale Z C. Mode trapping in the plasmasphere[J]. Journal of Geophysical Research: Space Physics, 113, A11210(2008).
[10] Carreon H. Fretting damage assessment in Ti-6Al-4V by magnetic sensing[J]. Wear, 265, 255-260(2008).
[11] Životsky O, Postava K, Kraus L et al. Surface and bulk magnetic properties of as-quenched FeNbB ribbons[J]. Journal of Magnetism and Magnetic Materials, 320, 1535-1540(2008).
[12] Bonavolonta C, Valentino M, Peluso G et al. Non destructive evaluation of advanced composite materials for aerospace application using HTS SQUIDs[J]. IEEE Transactions on Applied Superconductivity, 17, 772-775(2007).
[13] Kuroda M, Yamanaka S, Isobe Y. Detection of plastic deformation in low carbon steel by SQUID magnetometer using statistical techniques[J]. NDT & e International, 38, 53-57(2005).
[14] Tralshawala N, Claycomb J R. Miller J H Jr. Practical SQUID instrument for nondestructive testing[J]. Applied Physics Letters, 71, 1573-1575(1997).
[15] Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 97, 151110(2010).
[16] Kominis I K, Kornack T W, Allred J C et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 422, 596-599(2003).
[17] Knowles P, Bison G, Castagna N et al. Laser-driven Cs magnetometer arrays for magnetic field measurement and control[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 611, 306-309(2009).
[18] Ledbetter M P, Theis T, Blanchard J W et al. Near-zero-field nuclear magnetic resonance[J]. Physical Review Letters, 107, 107601(2011).
[19] Chen B T, Jiang M, Ji Y L et al. Spin-exchange relaxation free atomic magnetometer for zero-field nuclear magnetic resonance detection[J]. Chinese Journal of Lasers, 44, 1004001(2017).
[20] Savukov I M, Zotev V S, Volegov P L et al. MRI with an atomic magnetometer suitable for practical imaging applications[J]. Journal of Magnetic Resonance, 199, 188-191(2009).
[21] Appelt S. Baranga A B A, Erickson C J, et al. Theory of spin-exchange optical pumping of 3He and 129Xe[J]. Physical Review A, 58, 1412-1439(1998).
[22] Appelt S. Ben-Amar Baranga A, Young A R, et al. Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells[J]. Physical Review A, 59, 2078-2084(1999).
[23] Smullin S J, Savukov I M, Vasilakis G et al. Low-noise high-density alkali-metal scalar magnetometer[J]. Physical Review A, 80, 033420(2009).
[24] Lee S K, Sauer K L, Seltzer S J et al. Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance[J]. Applied Physics Letters, 89, 214106(2006).
[25] Savukov I M, Seltzer S J, Romalis M V et al. Tunable atomic magnetometer for detection of radio-frequency magnetic fields[J]. Physical Review Letters, 95, 063004(2005).
[26] Jau Y Y, Post A B, Kuzma N N et al. Intense, narrow atomic-clock resonances[J]. Physical Review Letters, 92, 110801(2004).
[27] Xia H. Ben-Amar Baranga A, Hoffman D, et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 89, 211104(2006).
[28] Scholtes T, Schultze V, IJsselsteijn R et al. Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell[J]. Physical Review A, 84, 043416(2011).
[29] Sheng D, Li S, Dural N et al. Subfemtotesla scalar atomic magnetometry using multipass cells[J]. Physical Review Letters, 110, 160802(2013).
[30] Grujic Z D, Koss P A, Bison G et al. A sensitive and accurate atomic magnetometer based on free spin precession[J]. The European Physical Journal D, 69, 135(2015).
[31] Purcell E M, Field G B. Influence of collisions upon population of hyperfine states in hydrogen[J]. The Astrophysical Journal, 124, 542(1956).
[32] Bison G, Wynands R, Weis A. A laser-pumped magnetometer for the mapping of human cardiomagnetic fields[J]. Applied Physics B: Lasers and Optics, 76, 325-328(2003).
[33] Kim K, Begus S, Xia H et al. Multi-channel atomic magnetometer for magnetoencephalography: a configuration study[J]. NeuroImage, 89, 143-151(2014).
Get Citation
Copy Citation Text
Zheng Wenqiang, Bi Xin, Zhang Guoyi, Su Shengran, Li Jingsong, Lin Qiang. Experimental Demonstration of Light Narrowing Effect Based on Free Atomic Spin Precession[J]. Chinese Journal of Lasers, 2020, 47(3): 304001
Category: Measurement and metrology
Received: Jul. 4, 2019
Accepted: --
Published Online: Mar. 12, 2020
The Author Email: