International Journal of Extreme Manufacturing, Volume. 7, Issue 1, 12006(2025)

Manufacturing strategies for highly sensitive and self-powered piezoelectric and triboelectric tactile sensors

Park Hyosik, Gbadam Gerald Selasie, Niu Simiao, Ryu Hanjun, and Lee Ju-Hyuck
References(144)

[1] [1] Pang Y K, Xu X C, Chen S E, Fang Y H, Shi X D, Deng Y M, Wang Z L and Cao C Y 2022 Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots Nano Energy96 107137

[2] [2] Cheng S B, Narang Y S, Yang C H, Suo Z G and Howe R D 2019 Stick-on large-strain sensors for soft robots Adv. Mater. Interfaces6 1900985

[3] [3] Chin K, Hellebrekers T and Majidi C 2020 Machine learning for soft robotic sensing and control Adv. Intell. Syst.2 1900171

[4] [4] Jin T et al 2020 Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications Nat. Commun.11 5381

[5] [5] Won P et al 2021 Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics Adv. Mater.33 2002397

[6] [6] Pal A, Restrepo V, Goswami D and Martinez R V 2021 Exploiting mechanical instabilities in soft robotics: control, sensing, and actuation Adv. Mater.33 2006939

[7] [7] Luo H X et al 2024 Bioinspired suspended sensing membrane array with modulable wedged-conductive channels for crosstalk-free and high-resolution detection Adv. Sci.11 2403645

[8] [8] Li S, Chen X L, Li X M, Tian H M, Wang C H, Nie B B, He J and Shao J Y 2022 Bioinspired robot skin with mechanically gated electron channels for sliding tactile perception Sci. Adv.8 eade0720

[9] [9] Zhong J W, Ma Y, Song Y, Zhong Q Z, Chu Y, Karakurt I, Bogy D B and Lin L W 2019 A flexible piezoelectret actuator/sensor patch for mechanical human–machine interfaces ACS Nano13 7107–16

[10] [10] Xu C S, Chen J, Zhu Z F, Liu M R, Lan R H, Chen X H, Tang W, Zhang Y and Li H 2024 Flexible pressure sensors in human–machine interface applications Small20 2306655

[11] [11] Yu S, Park T H, Jiang W, Lee S W, Kim E H, Lee S, Park J E and Park C 2023 Soft human–machine interface sensing displays: materials and devices Adv. Mater.35 2204964

[12] [12] Yin R Y, Wang D P, Zhao S F, Lou Z and Shen G Z 2021 Wearable sensors-enabled human–machine interaction systems: from design to application Adv. Funct. Mater.31 2008936

[13] [13] Wang M, Wang T, Luo Y F, He K, Pan L, Li Z, Cui Z Q, Liu Z H, Tu J Q and Chen X D 2021 Fusing stretchable sensing technology with machine learning for human–machine interfaces Adv. Funct. Mater.31 2008807

[14] [14] Lim H R, Kim H S, Qazi R, Kwon Y T, Jeong J W and Yeo W H 2020 Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment Adv. Mater.32 1901924

[15] [15] Lu Y Y, Yang G, Shen Y J, Yang H Y and Xu K C 2022 Multifunctional flexible humidity sensor systems towards noncontact wearable electronics Nano-Micro. Lett.14 150

[16] [16] Wang H Z, Li Z, Liu Z Y, Fu J K, Shan T Y, Yang X Y, Lei Q Y, Yang Y J and Li D H 2022 Flexible capacitive pressure sensors for wearable electronics J. Mater. Chem. C 10 1594–605

[17] [17] Li L H et al 2018 Ultrastretchable fiber sensor with high sensitivity in whole workable range for wearable electronics and implantable medicine Adv. Sci.5 1800558

[18] [18] Xu K C, Lu Y Y and Takei K 2019 Multifunctional skin-inspired flexible sensor systems for wearable electronics Adv. Mater. Technol.4 1800628

[19] [19] Lee Y, Kim J, Jang B, Kim S, Sharma B K, Kim J H and Ahn J H 2019 Graphene-based stretchable/wearable self-powered touch sensor Nano Energy62 259–67

[20] [20] Feng T X, Ling D, Li C Y, Zheng W T, Zhang S C, Li C, Emel'Yanov A, Pozdnyakov A S, Lu L J and Mao Y C 2024 Stretchable on-skin touchless screen sensor enabled by ionic hydrogel Nano Res.17 4462–70

[21] [21] Tkachev S, Monteiro M, Santos J, Placidi E, Hassine M B, Marques P, Ferreira P, Alpuim P and Capasso A 2021 Environmentally friendly graphene inks for touch screen sensors Adv. Funct. Mater.31 2103287

[22] [22] Kim S J, Phung T H, Kim S, Rahman M K and Kwon K S 2020 Low-cost fabrication method for thin, flexible, and transparent touch screen sensors Adv. Mater. Technol.5 2000441

[23] [23] Wang Z H, Yuan X T, Yang J K, Huan Y, Gao X Y, Li Z M, Wang H and Dong S X 2020 3D-printed flexible, Ag-coated PNN-PZT ceramic-polymer grid-composite for electromechanical energy conversion Nano Energy73 104737

[24] [24] Cai Y W, Zhang X N, Wang G G, Li G Z, Zhao D Q, Sun N, Li F, Zhang H Y, Han J C and Yang Y 2021 A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin Nano Energy81 105663

[25] [25] Wang Y, Wu H T, Xu L, Zhang H N, Yang Y and Wang Z L 2020 Hierarchically patterned self-powered sensors for multifunctional tactile sensing Sci. Adv.6 eabb9083

[26] [26] Kim N I et al 2020 Piezoelectric pressure sensor based on flexible gallium nitride thin film for harsh-environment and high-temperature applications Sens. Actuators A 305 111940

[27] [27] Lin Y C, Duan S S, Zhu D, Li Y H, Wang B H and Wu J 2023 Self-powered and interface-independent tactile sensors based on bilayer single-electrode triboelectric nanogenerators for robotic electronic skin Adv. Intell. Syst.5 2100120

[28] [28] Liu Q, Wang X X, Song W Z, Qiu H J, Zhang J, Fan Z Y, Yu M and Long Y Z 2020 Wireless single-electrode self-powered piezoelectric sensor for monitoring ACS Appl. Mater. Interfaces12 8288–95

[29] [29] Chen X L, Shao J Y, Tian H M, Li X M, Wang C H, Luo Y S and Li S 2020 Scalable imprinting of flexible multiplexed sensor arrays with distributed piezoelectricity-enhanced micropillars for dynamic tactile sensing Adv. Mater. Technol.5 2000046

[30] [30] Liu X G, Liu J F, He L R, Shang Y H and Zhang C H 2022 3D printed piezoelectric-regulable cells with customized electromechanical response distribution for intelligent sensing Adv. Funct. Mater.32 2201274

[31] [31] Yu J R, Gao G Y, Huang J R, Yang X X, Han J, Zhang H, Chen Y H, Zhao C L, Sun Q J and Wang Z L 2021 Contact-electrification-activated artificial afferents at femtojoule energy Nat. Commun.12 1581

[32] [32] Qu X C, Xue J T, Liu Y, Rao W, Liu Z and Li Z 2022 Fingerprint-shaped triboelectric tactile sensor Nano Energy98 107324

[33] [33] Yeo H G, Jung J, Sim M, Jang J E and Choi H 2020 Integrated piezoelectric AlN thin film with SU-8/PDMS supporting layer for flexible sensor array Sensors20 315

[34] [34] Park H, Oh S J, Kim D, Kim M, Lee C, Joo H, Woo I, Bae J W and Lee J H 2022 Plasticized PVC-gel single layer-based stretchable triboelectric nanogenerator for harvesting mechanical energy and tactile sensing Adv. Sci.9 2201070

[35] [35] Lin W K, Wang B, Peng G X, Shan Y, Hu H and Yang Z B 2021 Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+column electrodes for spatiotemporally distinguishing diverse stimuli Adv. Sci.8 2002817

[36] [36] Rostamian B, Koolani M, Abdollahzade P, Lankarany M, Falotico E, Amiri M and Thakor N V 2022 Texture recognition based on multi-sensory integration of proprioceptive and tactile signals Sci. Rep.12 21690

[37] [37] Lee G, Son J H, Lee S, Kim S W, Kim D, Nguyen N N, Lee S G and Cho K 2021 Fingerpad-inspired multimodal electronic skin for material discrimination and texture recognition Adv. Sci.8 2002606

[38] [38] Kim K, Sim M, Lim S H, Kim D, Lee D, Shin K, Moon C, Choi J W and Jang J E 2021 Tactile avatar: tactile sensing system mimicking human tactile cognition Adv. Sci.8 2002362

[39] [39] Su Y J et al 2021 Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring Adv. Funct. Mater.31 2010962

[40] [40] Liu Y et al 2022 All-ceramic flexible piezoelectric energy harvester Adv. Funct. Mater.32 2209297

[41] [41] Jin C R, Hao N J, Xu Z, Trase I, Nie Y, Dong L, Closson A, Chen Z and Zhang J X J 2020 Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films Sens. Actuators A 305 111912

[42] [42] Du Y P, Wang R X, Zeng M X, Xu S J, Saeidi-Javash M, Wu W Z and Zhang Y L 2021 Hybrid printing of wearable piezoelectric sensors Nano Energy90 106522

[43] [43] Dai M J et al 2019 Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors Nano Lett.19 5410–6

[44] [44] Zheng T, Li G Z, Zhang L N, Lei Y, Huang W H, Wang J, Zhang B B, Xiang J W and Yang Y 2024 Dielectric-enhanced, high-sensitivity, wide-bandwidth, and moisture-resistant noncontact triboelectric sensor for vibration signal acquisition ACS Appl. Mater. Interfaces16 7904–16

[45] [45] Zhao C, Wang Z Y, Wang Y W, Qian Z A, Tan Z, Chen Q Y, Pan X X, Xu M Y and Lai Y C 2023 MXene-composite-enabled ultra-long-distance detection and highly sensitive self-powered noncontact triboelectric sensors and their applications in intelligent vehicle perception Adv. Funct. Mater.33 2306381

[46] [46] Zhang W L, Lu Y X, Liu T, Zhao J M, Liu Y H, Fu Q, Mo J L, Cai C C and Nie S X 2022 Spheres multiple physical network-based triboelectric materials for self-powered contactless sensing Small18 2200577

[47] [47] Tan F X, Xiong Y, Yu J R, Wang Y F, Li Y H, Wei Y C, Sun J, Xie X Y, Sun Q J and Wang Z L 2021 Triboelectric potential tuned dual-gate IGZO transistor for versatile sensory device Nano Energy90 106617

[48] [48] Tang Y J, Zhou H, Sun X P, Diao N H, Wang J B, Zhang B S, Qin C, Liang E J and Mao Y C 2020 Triboelectric touch-free screen sensor for noncontact gesture recognizing Adv. Funct. Mater.30 1907893

[49] [49] Liu Y X et al 2024 Multi-length engineering of (K, Na) NbO3 films for lead-free piezoelectric acoustic sensors with high sensitivity Adv. Funct. Mater.34 2312699

[50] [50] Wang Q, Ruan T, Xu Q D, Yang B and Liu J Q 2021 Wearable multifunctional piezoelectric MEMS device for motion monitoring, health warning, and earphone Nano Energy89 106324

[51] [51] Lan B L, Xiao X, Carlo A D, Deng W L, Yang T, Jin L, Tian G, Ao Y, Yang W Q and Chen J 2022 Topological nanofibers enhanced piezoelectric membranes for soft bioelectronics Adv. Funct. Mater.32 2207393

[52] [52] Xu F, Yang J, Dong R Z, Jiang H X, Wang C H, Liu W L, Jiang Z X, Zhang X Q and Zhu G D 2021 Wave-shaped piezoelectric nanofiber membrane nanogenerator for acoustic detection and recognition Adv. Fiber Mater.3 368–80

[53] [53] Han J H et al 2018 Machine learning-based self-powered acoustic sensor for speaker recognition Nano Energy53 658–65

[54] [54] Wang S L, Wang S F, Jiang T, Zhao X K, Zhang W Q, Chen Z M, Li H L, Li P and Huang J J 2024 Enhancing the recognition accuracy of tactile sensor through electrode and triboelectric material interface structure management strategy Nano Energy123 109353

[55] [55] Song Z W et al 2022 A flexible triboelectric tactile sensor for simultaneous material and texture recognition Nano Energy93 106798

[56] [56] Rong X, Zhao J Q, Guo H, Zhen G W, Yu J H, Zhang C and Dong G F 2020 Material recognition sensor array by electrostatic induction and triboelectric effects Adv. Mater. Technol.5 2000641

[57] [57] Wei X L, Wang B C, Wu Z Y and Wang Z L 2022 An open-environment tactile sensing system: toward simple and efficient material identification Adv. Mater.34 2203073

[58] [58] Park H, Kim J and Lee J H 2022 Triboelectrification based multifunctional tactile sensors J. Sens. Sci. Technol.31 139–44

[59] [59] Yue Y et al 2018 3D hybrid porous mxene-sponge network and its application in piezoresistive sensor Nano Energy50 79–87

[60] [60] Zheng Q B, Lee J H, Shen X, Chen X D and Kim J K 2020 Graphene-based wearable piezoresistive physical sensors Mater. Today36 158–79

[61] [61] Yu R, Xia T C, Wu B, Yuan J, Ma L J, Cheng G J and Liu F 2020 Highly sensitive flexible piezoresistive sensor with 3D conductive network ACS Appl. Mater. Interfaces12 35291–9

[62] [62] Li J, Fang L C, Sun B H, Li X X and Kang S H 2020 Review—recent progress in flexible and stretchable piezoresistive sensors and their applications J. Electrochem. Soc.167 037561

[63] [63] Fiorillo A S, Critello C D and Pullano S A 2018 Theory, technology and applications of piezoresistive sensors: a review Sens. Actuators A 281 156–75

[64] [64] He J, Zhang Y F, Zhou R H, Meng L R, Chen T, Mai W and Pan C F 2020 Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects J. Materiomics.6 86–101

[65] [65] Zhang Q H et al 2018 An elastic autonomous self-healing capacitive sensor based on a dynamic dual crosslinked chemical system Adv. Mater.30 1801435

[66] [66] Qin J, Yin L J, Hao Y N, Zhong S L, Zhang D L, Bi K, Zhang Y X, Zhao Y and Dang Z M 2021 Flexible and stretchable capacitive sensors with different microstructures Adv. Mater.33 2008267

[67] [67] He X et al 2021 Microstructured capacitive sensor with broad detection range and long-term stability for human activity detection npj Flex. Electron.5 17

[68] [68] Ma Z Y, Zhang Y, Zhang K Y, Deng H and Fu Q 2023 Recent progress in flexible capacitive sensors: structures and properties Nano Mater. Sci.5 265–77

[69] [69] Cicek M O, Doganay D, Durukan M B, Gorur M C and Unalan H E 2021 Seamless monolithic design for foam based, flexible, parallel plate capacitive sensors Adv. Mater. Technol.6 2001168

[70] [70] Ha K H, Huh H, Li Z J and Lu N S 2022 Soft capacitive pressure sensors: trends, challenges, and perspectives ACS Nano16 3442–8

[71] [71] Tressler J F, Alkoy S and Newnham R E 1998 Piezoelectric sensors and sensor materials J. Electroceram.2 257–72

[72] [72] Lu C and Czanderna A W 2012 Applications of Piezoelectric Quartz Crystal Microbalances (Elsevier)

[73] [73] Bunde R L, Jarvi E J and Rosentreter J J 1998 Piezoelectric quartz crystal biosensors Talanta46 1223–36

[74] [74] Gao Z Q, Ren B, Fang Z Z, Kang H Q, Han J and Li J 2021 Accurate recognition of object contour based on flexible piezoelectric and piezoresistive dual mode strain sensors Sens. Actuators A 332 113121

[75] [75] Jin C R et al 2021 Skin-like elastomer embedded zinc oxide nanoarrays for biomechanical energy harvesting Adv. Mater. Interfaces8 2100094

[76] [76] Zhang Y X, Ju F, Wei X Y, Wang D and Wang Y Y 2020 A piezoelectric tactile sensor for tissue stiffness detection with arbitrary contact angle Sensors20 6607

[77] [77] Su H X, Wang X B, Li C Y, Wang Z F, Wu Y H, Zhang J W, Zhang Y Z, Zhao C L, Wu J G and Zheng H W 2021 Enhanced energy harvesting ability of polydimethylsiloxane-BaTiO3-based flexible piezoelectric nanogenerator for tactile imitation application Nano Energy83 105809

[78] [78] Zhang P, Zhang W K, Deng L and Zhang H H 2021 A triboelectric nanogenerator based on temperature-stable high dielectric BaTiO3-based ceramic powder for energy harvesting Nano Energy87 106176

[79] [79] Fukada E and Yasuda I 1957 On the piezoelectric effect of bone J. Phys. Soc. Japan12 1158–62

[80] [80] Shamos M H, Lavine L S and Shamos M I 1963 Piezoelectric effect in bone Nature197 81

[81] [81] Park H, Kim Y, Kim Y, Lee C, Park H, Joo H, Lee J H and Lee J H 2023 Self-assembly of unidirectionally polarized piezoelectric peptide nanotubes using environmentally friendly solvents Appl. Surf. Sci.618 156588

[82] [82] Kholkin A, Amdursky N, Bdikin I, Gazit E and Rosenman G 2010 Strong piezoelectricity in bioinspired peptide nanotubes ACS Nano4 610–4

[83] [83] Wu T, Song Y H, Shi Z Q, Liu D N, Chen S L, Xiong C X and Yang Q L 2021 High-performance nanogenerators based on flexible cellulose nanofibril/MoS2 nanosheet composite piezoelectric films for energy harvesting Nano Energy80 105541

[84] [84] Song Y H, Shi Z Q, Hu G H, Xiong C X, Isogai A and Yang Q L 2021 Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review J. Mater. Chem. A 9 1910–37

[85] [85] Zhang J H et al 2022 Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency Nat. Commun.13 5076

[86] [86] Tang W, Sun Q J and Wang Z L 2023 Self-powered sensing in wearable electronics—a paradigm shift technology Chem. Rev.123 12105–34

[87] [87] Lin X D, Feng Z Y, Xiong Y, Sun W W, Yao W C, Wei Y C, Wang Z L and Sun Q J 2024 Piezotronic neuromorphic devices: principle, manufacture, and applications Int. J. Extrem. Manuf.6 032011

[88] [88] Yu J R, Yang X X and Sun Q J 2020 Piezo/tribotronics toward smart flexible sensors Adv. Intell. Syst.2 1900175

[89] [89] Niu S M and Wang Z L 2015 Theoretical systems of triboelectric nanogenerators Nano Energy14 161–92

[90] [90] Shao Z C, Chen J S, Xie Q and Mi L W 2023 Functional metal/covalent organic framework materials for triboelectric nanogenerator Coord. Chem. Rev.486 215118

[91] [91] Zhang R Y and Olin H 2020 Material choices for triboelectric nanogenerators: a critical review EcoMat2 e12062

[92] [92] Zhang B B et al 2017 Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring ACS Nano11 7440–6

[93] [93] Joo H, Gwak S, Park H, Yoon H J, Ryu H, Han S A and Lee J H 2024 Engineering self-healable and biodegradable ionic polyurethane with highly tribopositive behavior Nano Energy126 109706

[94] [94] Joo H, Gwak S, Lee M H, Park H, Lee C, Lee J H, Han S A and Lee J H 2023 Functionalized thermoplastic polyurethane with tunable tribopolarity and biodegradability for high performance and biodegradable triboelectric nanogenerator Sustain. Mater. Technol.36 e00638

[95] [95] Kim J, Lee J H, Ryu H, Lee J H, Khan U, Kim H, Kwak S S and Kim S W 2017 High-performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P(VDF-TrFE) with controlled crystallinity and dipole alignment Adv. Funct. Mater.27 1700702

[96] [96] Chen X X, Han M D, Chen H T, Cheng X L, Song Y, Su Z M, Jiang Y G and Zhang H X 2017 A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P (VDF-TrFE) nanofibers Nanoscale9 1263–70

[97] [97] Ma X, Li S Y, Dong S J, Nie J H, Iwamoto M, Lin S Q, Zheng L and Chen X Y 2019 Regulating the output performance of triboelectric nanogenerator by using P (VDF-TrFE) Langmuir monolayers Nano Energy66 104090

[98] [98] Guo M L, Wang C, Yang Z C, Xu Z T, Yang M S, Zhao P K, Zhou Y, Li P Y, Wang Q D and Li Y 2022 Controllable and scalable fabrication of superhydrophobic hierarchical structures for water energy harvesting Electronics11 1651

[99] [99] Park H, Oh S J, Kim M, Lee C, Joo H, Bae J W and Lee J H 2023 Plasticizer structural effect for sustainable and high-performance PVC gel-based triboelectric nanogenerators Nano Energy114 108615

[100] [100] Kim M, Park H, Lee M H, Bae J W, Lee K Y, Lee J H and Lee J H 2023 Stretching-insensitive stretchable and biocompatible triboelectric nanogenerators using plasticized PVC gel and graphene electrode for body-integrated touch sensor Nano Energy107 108159

[101] [101] Mao Y Y, Li Y, Xie J Y, Liu H, Guo C J and Hu W B 2021 Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2NW hybrid elastomer Nano Energy84 105918

[102] [102] Ouyang R, Huang Y, Ye H T, Zhang Z J and Xue H 2022 Copper particles-PTFE tube based triboelectric nanogenerator for wave energy harvesting Nano Energy102 107749

[103] [103] Liu H W, Dong J, Zhou H Y, Yang X D, Xu C Y, Yao Y Q, Zhou G D, Zhang S M and Song Q L 2021 Real-time acid rain sensor based on a triboelectric nanogenerator made of a PTFE–PDMS composite film ACS Appl. Electron. Mater.3 4162–71

[104] [104] Qiu G R, Lu L, Lu Y and Sun C W 2020 Effects of pulse charging by triboelectric nanogenerators on the performance of solid-state lithium metal batteries ACS Appl. Mater. Interfaces12 28345–50

[105] [105] Cheong J Y, Koay J S C, Chen R H, Aw K C, Velayutham T S, Chen B H, Li J, Foo C Y and Gan W C 2021 Maximizing the output power density enhancement of solid polymer electrolyte based-triboelectric nanogenerators via contact electrification-induced ionic polarization Nano Energy90 106616

[106] [106] Uzabakiriho P C et al 2020 High-performance, mechanically and thermally compliant silica-based solid polymer electrolyte for triboelectric nanogenerators application Adv. Mater. Technol.5 2000303

[107] [107] Yang W Q, Xiao P, Ni F, Zhang C, Gu J C, Kuo S W, Liu Q Q and Chen T 2022 Biomass-derived nanostructured coatings based on cellulose nanofibers-melanin hybrids toward solar-enabled multifunctional energy management Nano Energy97 107180

[108] [108] Contreras-Pereda N, Surez-Garca S, Pfattner R and Ruiz-Molina D 2024 Melanin-inspired conductive thin films for multimodal-sensing wearable on-skin electronics Mater. Today Chem.35 101855

[109] [109] Kim J, Ryu H, Lee J H, Khan U, Kwak S S, Yoon H J and Kim S W 2020 High permittivity CaCu3Ti4O12 particle-induced internal polarization amplification for high performance triboelectric nanogenerators Adv. Energy Mater.10 1903524

[110] [110] Kim M P, Ahn C W, Lee Y, Kim K, Park J and Ko H 2021 Interfacial polarization-induced high-k polymer dielectric film for high-performance triboelectric devices Nano Energy82 105697

[111] [111] Habib M, Lantgios I and Hornbostel K 2022 A review of ceramic, polymer and composite piezoelectric materials J. Appl. Phys.55 423002

[112] [112] Wang R X, Sui J and Wang X D 2022 Natural piezoelectric biomaterials: a biocompatible and sustainable building block for biomedical devices ACS Nano16 17708–28

[113] [113] Wang X D, Song J H, Liu J and Wang Z L 2007 Direct-current nanogenerator driven by ultrasonic waves Science316 102–5

[114] [114] Oh H and Dayeh S A 2020 Physics-based device models and progress review for active piezoelectric semiconductor devices Sensors20 3872

[115] [115] Xu Q, Wen J and Qin Y 2021 Development and outlook of high output piezoelectric nanogenerators Nano Energy86 106080

[116] [116] Hu Y F and Wang Z L 2015 Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors Nano Energy14 3–14

[117] [117] Chang C J, Lee Y H, Dai C A, Hsiao C C, Chen S H, Nurmalasari N P D, Chen J C, Cheng Y Y, Shih W P and Chang P Z 2011 A large area bimaterial sheet of piezoelectric nanogenerators for energy harvesting: effect of RF sputtering on ZnO nanorod Microelectron. Eng.88 2236–41

[118] [118] Mondal A, Singh H H and Khare N 2023 Effect of piezoelectric coefficient and dielectric constant on the performance of polymer nanocomposite piezoelectric nanogenerator J. Mater. Sci.: Mater. Electron.34 314

[119] [119] Hwang G T et al 2016 Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester Adv. Energy Mater.6 1600237

[120] [120] Liu Y, Shen B Z, Bian L, Hao J G, Yang B, Zhang R and Cao W W 2023 Enhanced electromechanical performance in lead-free (Na, K) NbO3-based piezoceramics via the synergistic design of texture engineering and sm-modification ACS Appl. Mater. Interfaces15 47221–8

[121] [121] Kou Q W, Yang B, Lei H B, Yang S, Zhang Z R, Liu L J, Xie H, Sun Y, Chang Y F and Li F 2023 Lead-free textured ceramics with ultrahigh piezoelectric properties by synergistic design ACS Appl. Mater. Interfaces15 37706–16

[122] [122] Yang L J, Chi S, Dong S P, Yuan F, Wang Z D, Lei J X, Bao L X, Xiang J and Wang J L 2020 Preparation and characterization of a novel piezoelectric nanogenerator based on soluble and meltable copolyimide for harvesting mechanical energy Nano Energy67 104220

[123] [123] Panda S, Hajra S, Jeong H, Panigrahi B K, Pakawanit P, Dubal D, Hong S and Kim H J 2022 Biocompatible CaTiO3-PVDF composite-based piezoelectric nanogenerator for exercise evaluation and energy harvesting Nano Energy102 107682

[124] [124] Islam M N et al 2023 Boosting piezoelectricity by 3D printing PVDF-MoS2 composite as a conformal and high-sensitivity piezoelectric sensor Adv. Funct. Mater.33 2302946

[125] [125] Sun X, Liu Y J, Luo N, Liu Y, Feng Y G, Chen S G and Wang D A 2022 Controlling the triboelectric properties and tribological behavior of polyimide materials via plasma treatment Nano Energy102 107691

[126] [126] Li S Y, Fan Y, Chen H Q, Nie J H, Liang Y X, Tao X L, Zhang J, Chen X Y, Fu E G and Wang Z L 2020 Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation Energy Environ. Sci.13 896–907

[127] [127] Ahn J et al 2021 Morphology-controllable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator Nano Energy85 105978

[128] [128] Sun J Z, Choi H, Cha S, Ahn D, Choi M, Park S, Cho Y, Lee J, Park T E and Park J J 2022 Highly enhanced triboelectric performance from increased dielectric constant induced by ionic and interfacial polarization for chitosan based multi-modal sensing system Adv. Funct. Mater.32 2109139

[129] [129] Tang W, Meng B and Zhang H X 2013 Investigation of power generation based on stacked triboelectric nanogenerator Nano Energy2 1164–71

[130] [130] Chun J, Ye B U, Lee J W, Choi D, Kang C Y, Kim S W, Wang Z L and Baik J M 2016 Boosted output performance of triboelectric nanogenerator via electric double layer effect Nat. Commun.7 12985

[131] [131] Cheng L, Xu Q, Zheng Y B, Jia X F and Qin Y 2018 A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed Nat. Commun.9 3773

[132] [132] Liu Q J, Jin L, Zhang P, Zhang B B, Li Y X, Xie S and Li X H 2021 Nanofibrous grids assembled orthogonally from direct-written piezoelectric fibers as self-powered tactile sensors ACS Appl. Mater. Interfaces13 10623–31

[133] [133] Lu J L et al 2022 A biodegradable and recyclable piezoelectric sensor based on a molecular ferroelectric embedded in a bacterial cellulose hydrogel ACS Nano16 3744–55

[134] [134] Yu D, Zheng Z P, Liu J D, Xiao H Y, Huangfu G and Guo Y P 2021 Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring Nano-Micro. Lett.13 117

[135] [135] Huang M J, Zhu M L, Feng X W, Zhang Z X, Tang T Y, Guo X G, Chen T, Liu H C, Sun L N and Lee C 2023 Intelligent cubic-designed piezoelectric node (iCUPE) with simultaneous sensing and energy harvesting ability toward self-sustained artificial intelligence of things (AIoT) ACS Nano17 6435–51

[136] [136] Rasel M S, Maharjan P, Salauddin M, Rahman M T, Cho H O, Kim J W and Park J Y 2018 An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications Nano Energy49 603–13

[137] [137] Pratap A, Gogurla N and Kim S 2022 Elastic and skin-contact triboelectric nanogenerators and their applicability in energy harvesting and tactile sensing ACS Appl. Electron. Mater.4 1124–31

[138] [138] Liu J Y, Wen Z, Lei H, Gao Z Q and Sun X H 2022 A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa−1Nano-Micro. Lett.14 88

[139] [139] Xing P C, An S S, Wu Y H, Li G, Liu S Z, Wang J, Cheng Y L, Zhang Y S and Pu X J 2023 A triboelectric tactile sensor with flower-shaped holes for texture recognition Nano Energy116 108758

[140] [140] Yang H, Bu T Z, Liu W B, Liu J Q, Ling Y Z, Wu M X, Liu W R, Wang C G, Gao X F and Wang L H 2024 A novel triboelectric-optical hybrid tactile sensor for human-machine tactile interaction Nano Energy125 109592

[141] [141] Li M J et al 2019 Low-voltage operational, low-power consuming, and high sensitive tactile switch based on 2D layered InSe tribotronics Adv. Funct. Mater.29 1809119

[142] [142] Yang Z W, Pang Y K, Zhang L M, Lu C X, Chen J, Zhou T, Zhang C and Wang Z L 2016 Tribotronic transistor array as an active tactile sensing system ACS Nano10 10912–20

[143] [143] Zhang H, Yu J R, Yang X X, Gao G Y, Qin S S, Sun J, Ding M, Jia C K, Sun Q J and Wang Z L 2020 Ion gel capacitively coupled tribotronic gating for multiparameter distance sensing ACS Nano14 3461–8

[144] [144] Meng Y F, Zhao J Q, Yang X X, Zhao C L, Qin S S, Cho J H, Zhang C, Sun Q J and Wang Z L 2018 Mechanosensation-active matrix based on direct-contact tribotronic planar graphene transistor array ACS Nano12 9381–9

Tools

Get Citation

Copy Citation Text

Park Hyosik, Gbadam Gerald Selasie, Niu Simiao, Ryu Hanjun, Lee Ju-Hyuck. Manufacturing strategies for highly sensitive and self-powered piezoelectric and triboelectric tactile sensors[J]. International Journal of Extreme Manufacturing, 2025, 7(1): 12006

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Topical Review

Received: May. 31, 2024

Accepted: Apr. 17, 2025

Published Online: Apr. 17, 2025

The Author Email:

DOI:10.1088/2631-7990/ad88be

Topics