Acta Optica Sinica, Volume. 44, Issue 10, 1026028(2024)
Multi-Soliton Field Analysis in SiO2 Optical Microcavities with Thermal Effect
[1] Johnson A R, Okawachi Y, Levy J S et al. Chip-based frequency combs with sub-100 GHz repetition rates[J]. Optics Letters, 37, 875-877(2012).
[2] Okawachi Y, Saha K, Levy J S et al. Octave-spanning frequency comb generation in a silicon nitride chip[J]. Optics Letters, 36, 3398-3400(2011).
[3] Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 359, 884-887(2018).
[4] Lamb E S, Carlson D R, Hickstein D D et al. Optical-frequency measurements with a Kerr microcomb and photonic-chip supercontinuum[J]. Physical Review Applied, 9, 024030(2018).
[5] Newman Z L, Maurice V, Drake T et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 6, 680-685(2019).
[6] Chen D Y, Kovach A, Poust S et al. Normal dispersion silicon oxynitride microresonator Kerr frequency combs[J]. Applied Physics Letters, 115, 051105(2019).
[7] Grudinin I S, Yu N, Maleki L. Generation of optical frequency combs with a CaF2 resonator[J]. Optics Letters, 34, 878-880(2009).
[8] Fescenko I, Alnis J, Schliesser A et al. Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator[J]. Optics Express, 20, 19185-19193(2012).
[9] Xue X X, Xuan Y, Liu Y et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators[J]. Nature Photonics, 9, 594-600(2015).
[10] Jung H, Xiong C, Fong K Y et al. Optical frequency comb generation from aluminum nitride microring resonator[J]. Optics Letters, 38, 2810-2813(2013).
[11] Jung H, Stoll R, Guo X et al. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator[J]. Optica, 1, 396-399(2014).
[12] Mohageg M, Savchenkov A, Maleki L. High-Q optical whispering gallery modes in elliptical LiNbO3 resonant cavities[J]. Optics Express, 15, 4869-4875(2007).
[13] Wang C, Burek M J, Lin Z et al. Integrated high quality factor lithium niobate microdisk resonators[J]. Optics Express, 22, 30924-30933(2014).
[14] Vyas A, Peroulis D, Bajaj A K. A microresonator design based on nonlinear 1∶2 internal resonance in flexural structural modes[J]. Journal of Microelectromechanical Systems, 18, 744-762(2009).
[15] Levy J S, Gondarenko A, Foster M A et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects[J]. Nature Photonics, 4, 37-40(2010).
[16] Weng W L, Anstie J D, Abbott P et al. Stabilization of a dynamically unstable opto-thermo-mechanical oscillator[J]. Physical Review A, 91, 063801(2015).
[17] Carmon T, Yang L, Vahala K J. Dynamical thermal behavior and thermal selfstability of microcavities[J]. Optics Express, 12, 4742-4750(2004).
[18] Deng Y, Liu F F, Leseman Z C et al. Thermo-optomechanical oscillator for sensing applications[J]. Optics Express, 21, 4653-4664(2013).
[19] Kobatake T, Kato T, Itobe H et al. Thermal effects on Kerr comb generation in a CaF2 whispering-gallery mode microcavity[J]. IEEE Photonics Journal, 8, 4501109(2016).
[20] Coen S, Randle H G, Sylvestre T et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model[J]. Optics Letters, 38, 37-39(2013).
[21] Hansson T, Wabnitz S. Dynamics of microresonator frequency comb generation: models and stability[J]. Nanophotonics, 5, 231-243(2016).
[22] Yoshiki W, Tanabe T. Analysis of bistable memory in silica toroid microcavity[J]. Journal of the Optical Society of America B, 29, 3335-3343(2012).
Get Citation
Copy Citation Text
Xin Xu, Huichun Ye, Chen Jiao, Xueying Jin, Chengliang Pan, Dong Chen, Haojie Xia. Multi-Soliton Field Analysis in SiO2 Optical Microcavities with Thermal Effect[J]. Acta Optica Sinica, 2024, 44(10): 1026028
Category: Physical Optics
Received: Oct. 17, 2023
Accepted: Jan. 10, 2024
Published Online: May. 6, 2024
The Author Email: Xia Haojie (hjxia@hfut.edu.cn)
CSTR:32393.14.AOS231667