Semiconductor Optoelectronics, Volume. 46, Issue 2, 216(2025)

Design and Optimization of Mid-Wavelength Avalanche Photodiodes Based on Antimonides

WANG Peiyan1,2, CHEN Weiqiang1,2, LU Lidan1,2, ZHU Lianqing1,2, and ZHANG Dongliang3
Author Affiliations
  • 1Beijing Engineering Research Center of Optoelectronic Information and Instrument, Beijing Information Science & Technology University, Beijing 100016, CHN
  • 2Instrumentation Science and Optoelectronic Engineering College, Beijing Information Science & Technology University, Beijing 100016, CHN
  • 3North China Institute of Optoelectronic Technology, Beijing 100015, CHN
  • show less
    References(26)

    [1] [1] Campbell J C. Recent advances in telecommunications avalanche photodiodes[J]. Journal of Lightwave Technology, 2007, 25(1): 109-121.

    [2] [2] Storeb A K, Brudevoll T, Selvig E, et al. Effect of the series resistance on the current response of a HgCdTe avalanche photodiode under high-intensity nanosecond irradiation[J]. Journal of Electronic Materials, 2022, 51(7): 4029-4039.

    [3] [3] Alimi Y, Pusino V, Steer M J, et al. InSb avalanche photodiodes on GaAs substrates for mid-infrared detection[J]. IEEE Transactions on Electron Devices, 2020, 67(1): 179-184.

    [4] [4] Huang J, Zhao C, Nie B, et al. High-performance mid-wavelength InAs avalanche photodiode using AlAs0.13Sb0.87 as the multiplication layer[J]. Photonics Research, 2020, 8(5): 755.

    [5] [5] Dehzangi A, Li J, Gautam L, et al. Avalanche photodetector based on InAs/InSb superlattice[J]. Quantum Reports, 2020, 2(4): 591-599.

    [6] [6] Yan S, Huang J, Zhang Y, et al. Mid wavelength type ⅡInAs/GaSb superlattice avalanche photodiode with AlAsSb multiplication layer[J]. IEEE Electron Device Letters, 2021, 42(11): 1634-1637.

    [7] [7] Banerjee K, Ghosh S, Mallick S, et al. Midwave infrared InAs/GaSb strained layer superlattice hole avalanche photodiode[J]. Applied Physics Letters, 2009, 94(20): 201107.

    [8] [8] Perrais G, Rothman J, Destefanis G, et al. Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes[J]. Journal of Electronic Materials, 2008, 37(9): 1261-1273.

    [9] [9] Jones A H, March S D, Bank S R, et al. Low-noise high-temperature AlInAsSb/GaSb avalanche photodiodes for 2 m applications[J]. Nature Photonics, 2020, 14(9): 559-563.

    [10] [10] Tan C H, Velichko A, Lim L W, et al. Few-photon detection using InAs avalanche photodiodes[J]. Optics Express, 2019, 27(4): 5835-5842.

    [12] [12] Li J, Dehzangi A, Brown G, et al. Mid-wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice[J]. Scientific Reports, 2021, 11(1): 7104.

    [13] [13] Ren M, Maddox S J, Woodson M E, et al. AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes[J]. Applied Physics Letters, 2016, 108(19): 191108.

    [14] [14] Donnelly J P, Duerr E K, McIntosh K A, et al. Design considerations for 1.06 m InGaAsP-InP geiger-mode avalanche photodiodes[J]. IEEE Journal of Quantum Electronics, 2006, 42(8): 797-809.

    [15] [15] Taylor-Mew J, Shulyak V, White B, et al. Low excess noise of Al0.85Ga0.15As0.56Sb0.44 avalanche photodiode from pure electron injection[J]. IEEE Photonics Technology Letters, 2021, 33(20): 1155-1158.

    [16] [16] Pinel L L G, Dimler S J, Zhou X, et al. Effects of carrier injection profile on low noise thin Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes[J]. Optics Express, 2018, 26(3): 3568-3576.

    [17] [17] Caughey D M, Thomas R E. Carrier mobilities in silicon empirically related to doping and field[J]. Proceedings of the IEEE, 1967, 55(12): 2192-2193.

    [18] [18] Van Overstraeten R, Man H D. Measurement of the ionization rates in diffused silicon p-n junctions[J]. Solid-State Electronics, 1970, 13(5): 583-608.

    [19] [19] Liu W, Zhu L, Zhang D, et al. Optimization of NBN dual-band mid-/long-wavelength detector based on InAs/GaSb superlattice[J]. 2023, 52(9): 81-93.

    [20] [20] Parola S, Vauthelin A, Tournet J, et al. Improved efficiency of GaSb solar cells using an Al0.50Ga0.50As0.04Sb0.96 window layer[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110042.

    [21] [21] McIntyre R J. Multiplication noise in uniform avalanche diodes[J]. IEEE Transactions on Electron Devices, 1966, ED-13(1): 164-168.

    [22] [22] Grzesik M, Donnelly J, Duerr E, et al. Impact ionization in AlxGa1–xAsySb1–yavalanche photodiodes[J]. Applied Physics Letters, 2014, 104(16): 162103.

    [23] [23] Nakwaski W. Thermal conductivity of binary, ternary, and quaternary Ⅲ-Ⅴ compounds[J]. Journal of Applied Physics, 1988, 64(1): 159-166.

    [24] [24] Chen S, Yu D, Qiliang L. High-performance nonequilibrium InSb pin infrared photodetectors[J]. IEEE Transactions on Electron Devices, 2019, 66(3): 1361-1367.

    [25] [25] Donghai W, Jiakai L, Arash D, et al. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-Ⅱ InAs/InAsSb superlattice[J]. AIP Advances, 2020, 10(2): 025018.

    [26] [26] Deng G, Yang W, Gong X, et al. High-performance uncooled InAsSb-based pCBn mid-infrared photodetectors[J]. Infrared Physics & Technology, 2020, 105: 103260.

    [27] [27] Suo F, Tong J, Zhang D H. Dark current analysis of InAsSb-based hetero-pin mid-infrared photodiode[J]. IEEE Journal of Quantum Electronics, 2020, 56(1): 4400106.

    Tools

    Get Citation

    Copy Citation Text

    WANG Peiyan, CHEN Weiqiang, LU Lidan, ZHU Lianqing, ZHANG Dongliang. Design and Optimization of Mid-Wavelength Avalanche Photodiodes Based on Antimonides[J]. Semiconductor Optoelectronics, 2025, 46(2): 216

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 27, 2024

    Accepted: Sep. 18, 2025

    Published Online: Sep. 18, 2025

    The Author Email:

    DOI:10.16818/j.issn1001-5868.20241127001

    Topics