Chinese Optics Letters, Volume. 23, Issue 9, 093501(2025)

Machine-learning-assisted precision measurement of a tiny rotational angle based on interference vortex modes

Jingwen Zhou1, Yaling Yin1、*, Jihong Tang1, Qi Chu1, Lin Li1, Yong Xia1,2,3、**, Quanli Gu4, and Jianping Yin1
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
  • 4Petroleum Analyzer Company, LP, Houston 77064, USA
  • show less
    References(36)

    [21] K. He, X. Zhang, S. Ren et al. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770(2016).

    [33] C. Szegedy, W. Liu, Y. Q. Jia et al. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1(2015).

    [34] S. Xie, R. B. Girshick, P. Dollár et al. Aggregated residual transformations for deep neural networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5987(2017).

    [36] D. P. Kingma, J. J. C. Ba. Adam: a method for stochastic optimization(2014).

    Tools

    Get Citation

    Copy Citation Text

    Jingwen Zhou, Yaling Yin, Jihong Tang, Qi Chu, Lin Li, Yong Xia, Quanli Gu, Jianping Yin, "Machine-learning-assisted precision measurement of a tiny rotational angle based on interference vortex modes," Chin. Opt. Lett. 23, 093501 (2025)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics in Interdisciplinary Research

    Received: Feb. 28, 2025

    Accepted: Jun. 5, 2025

    Published Online: Sep. 2, 2025

    The Author Email: Yaling Yin (ylyin@phy.ecnu.edu.cn), Yong Xia (yxia@phy.ecnu.edu.cn)

    DOI:10.3788/COL202523.093501

    CSTR:32184.14.COL202523.093501

    Topics