Opto-Electronic Engineering, Volume. 51, Issue 10, 240158(2024)
Image recognition of complex transmission lines based on lightweight encoder-decoder networks
[1] Fan X, Li X P, Peng J W et al. Pendulum vibration analysis and suppression of a power transmission line inspection robot with variable center of gravity[J]. J Vib Shock, 43, 323-333(2024).
[2] Xu B Y, Zhao Y L, Wang T et al. Development of power transmission line detection technology based on unmanned aerial vehicle image vision[J]. SN Appl Sci, 5, 72(2023).
[3] Liu C Y, Wu Y Q. Research progress of vision detection methods based on deep learning for transmission lines[J]. Proc CSEE, 43, 7423-7445(2023).
[4] Zhao Y F, Hu Y G, Wang X P et al. Automatic power line extraction algorithm in complex scene[J]. Bull Surv Mapp, 1-6(2021).
[5] Chen X Y, Xia J, Du K. Overhead transmission line detection based on multiple linear-feature enhanced detector[J]. J Zhejiang Univ (Eng Sci), 55, 2382-2389(2021).
[6] Li Y T, Li H J, Zhang K et al. Recognition of complex power lines based on novel encoder-decoder network[J]. J Zhejiang Univ (Eng Sci), 58, 1133-1141(2024).
[7] Jaffari R, Hashmani M A, Reyes-aldasoro C C. A novel focal phi loss for power line segmentation with auxiliary classifier U-Net[J]. Sensors, 21, 2803(2021).
[8] Chen G K, Hao K, Wang B B et al. A power line segmentation model in aerial images based on an efficient multibranch concatenation network[J]. Expert Syst Appl, 228, 120359(2023).
[9] Yang L, Fan J F, Huo B Y et al. PLE-Net: automatic power line extraction method using deep learning from aerial images[J]. Expert Syst Appl, 198, 116771(2022).
[10] Xu G, Li G. Research on lightweight neural network of aerial powerline image segmentation[J]. J Image Graphics, 26, 2605-2618(2021).
[11] Chen M L, Wang Y Z, Dai Y et al. Small and strong: power line segmentation network in real time based on self-supervised learning[J]. Proc CSEE, 42, 1365-1374(2022).
[12] Gao Z S, Yang G D, Li E et al. Efficient parallel branch network with multi-scale feature fusion for real-time overhead power line segmentation[J]. IEEE Sensors J, 21, 12220-12227(2021).
[13] Zhu K J, Xu C H, Wei Y C et al. Fast-PLDN: fast power line detection network[J]. J Real-Time Image Proc, 19, 3-13(2022).
[14] Han G J, Zhang M, Li Q et al. A lightweight aerial power line segmentation algorithm based on attention mechanism[J]. Machines, 10, 881(2022).
[15] Zhu F W, Sun Y, Zhang Y Q et al. An improved MobileNetV3 mushroom quality classification model using images with complex backgrounds[J]. Agronomy, 13, 2924(2023).
[16] Yang K, Zhang Y, Zhang X et al. YOLOX with CBAM for insulator detection in transmission lines[J]. Multimed Tools Appl, 83, 43419-43437(2024).
[17] Tang G, Zhao H R, Claramunt C et al. PPA-Net: pyramid pooling attention network for multi-scale ship detection in SAR images[J]. Remote Sens, 15, 2855(2023).
[18] Saida S J, Sahoo S P, Ari S. Deep convolution neural network based semantic segmentation for ocean eddy detection[J]. Expert Syst Appl, 219, 119646(2023).
Get Citation
Copy Citation Text
Yuntang Li, Wenkai Zhu, Hengjie Li, Juan Feng, Yuan Chen, Jie Jin, Bingqing Wang, Xiaolu Li. Image recognition of complex transmission lines based on lightweight encoder-decoder networks[J]. Opto-Electronic Engineering, 2024, 51(10): 240158
Category: Article
Received: Jul. 8, 2024
Accepted: Sep. 9, 2024
Published Online: Jan. 2, 2025
The Author Email: Yuntang Li (李运堂)