Laser & Optoelectronics Progress, Volume. 60, Issue 5, 0527001(2023)
Improving Satellite Time Service Accuracy Based on Microwave-Optical Wave Entangled Signals
[1] Ceruzzi P E. Satellite navigation and the military-civilian dilemma: the geopolitics of GPS and its rivals[M]. Geppert A C T, Brandau D, Siebeneichner T. Militarizing outer space. Palgrave studies in the history of science and technology, 343-367(2020).
[2] Kumar A, Kumar S, Lal P et al. Introduction to GPS/GNSS technology[M]. Petropoulos G P, Srivastava P K. GPS and GNSS technology in geosciences, 3-20(2021).
[3] Satoshi K, Yasuhiko K, Takeyasu S[M]. Quasi-zenith satellite system(2015).
[4] Ning J S, Yao Y B, Zhang X H. Review of the development of global satellite navigation system[J]. Journal of Navigation and Positioning, 1, 3-8(2013).
[5] Yang Y X. The development and application of Beidou satellite navigation system[C], 280-286(2012).
[6] Ji B, Zhong B, Bian S F. Positioning performance analysis of the transponding satellite navigation system[J]. Hydrographic Surveying and Charting, 36, 44-47(2016).
[7] Yang X H, Li X H, Hua Y et al. Technical progress of satellite time service and time transfer[J]. Navigation Positioning and Timing, 8, 1-10(2021).
[8] Song P S, Ma J, Ma Z et al. Research and development status of quantum navigation technology[J]. Laser & Optoelectronics Progress, 55, 090003(2018).
[9] Giovannetti V, Lloyd S, Maccone L. Quantum cryptographic ranging[J]. Journal of Optics B: Quantum and Semiclassical Optics, 4, S413-S414(2002).
[10] Giovannetti V, Lloyd S, Maccone L et al. Clock synchronization with dispersion cancellation[J]. Physical Review Letters, 87, 117902(2001).
[11] Giovannetti V, Lloyd S, Maccone L et al. Conveyor-belt clock synchronization[J]. Physical Review A, 70, 043808(2004).
[12] Valencia A, Scarcelli G, Shih Y. Distant clock synchronization using entangled photon pairs[J]. Applied Physics Letters, 85, 2655-2657(2004).
[13] Kong F R. Studies on microwave propagation characteristics in subwavelength plasma layers[D](2018).
[14] Singh V, Bosman S J, Schneider B H et al. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity[J]. Nature Nanotechnology, 9, 820-824(2014).
[15] Luo J W, Wu D W, Miao Q et al. Squeezing and entanglement features in parametrically enhanced cavity electro-opto-mechanical converter[J]. Results in Physics, 18, 103176(2020).
[16] Chen C, Wu D W, Yang C Y et al. Research on enhancing synchronization precision between Roland C stations based on cavity electro-opto-mechanical system[J]. Acta Optica Sinica, 39, 0827001(2019).
[17] Luo J W, Wu D W, Miao Q et al. Navigation ranging scheme based on microwave-optical entanglement prepared by electro-opto-mechanical converters[J]. IEEE Photonics Journal, 12, 1-15(2020).
[18] Barzanjeh S, Guha S, Weedbrook C et al. Microwave quantum illumination[J]. Physical Review Letters, 114, 080503(2015).
[19] Luo J W, Wu D W, Miao Q et al. Microwave photon detection scheme based on hybrid cavity system[J]. EPL (Europhysics Letters), 131, 14001(2020).
[20] Meystre P, Sargent M[M]. Elements of quantum optics(1999).
[21] Zhang L B, Kang L, Chen J et al. Fabrication of superconducting nanowire single-photon detector[J]. Acta Physica Sinica, 60, 796-802(2011).
[22] Zhang W Y, Hu P, Xiao Y et al. High-efficiency polarization-insensitive superconducting nanowire single photon detector[J]. Acta Physica Sinica, 70, 20210486(2021).
Get Citation
Copy Citation Text
Yongfei Liu, Chunyan Yang, Luhan Zhao, Tianli Wei, Dewei Wu, Zhaoheng Ren. Improving Satellite Time Service Accuracy Based on Microwave-Optical Wave Entangled Signals[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0527001
Category: Quantum Optics
Received: Mar. 4, 2022
Accepted: Mar. 29, 2022
Published Online: Mar. 6, 2023
The Author Email: Chunyan Yang (ycy220@163.com)