Opto-Electronic Advances, Volume. 8, Issue 5, 250025(2025)
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
[1] T Rimmele, RimmeleT, KeilS, DoolingD, S Keil, RimmeleT, KeilS, DoolingD, D Dooling. Building the world’s largest optical solar telescope(2007).
[2] D MacTaggart, MacTaggartD, PriorC, al RaphaldiniBet, C Prior, MacTaggartD, PriorC, al RaphaldiniBet, B Raphaldini et al. Direct evidence that twisted flux tube emergence creates solar active regions. Nat Commun, 12, 6621(2021).
[3] M Stangalini, StangaliniM, VerthG, al FedunVet, G Verth, StangaliniM, VerthG, al FedunVet, V Fedun et al. Large scale coherent magnetohydrodynamic oscillations in a sunspot. Nat Commun, 13, 479(2022).
[4] D Yuan, YuanD, FuLB, al CaoWDet, LB Fu, YuanD, FuLB, al CaoWDet, WD Cao et al. Transverse oscillations and an energy source in a strongly magnetized sunspot. Nat Astron, 7, 856-866(2023).
[5] M Stangalini. Wave energy in the solar atmosphere. Nat Astron, 7, 761-762(2023).
[6] D Clery. ‘Campfires’ may drive heating of solar atmosphere. Science, 372, 557-558(2021).
[7] XL Yan, YanXL, XueZK, al JiangCWet, ZK Xue, YanXL, XueZK, al JiangCWet, CW Jiang et al. Fast plasmoid-mediated reconnection in a solar flare. Nat Commun, 13, 640(2022).
[8] R Ishikawa, IshikawaR, BuenoJT, Alemán DelPino, JT Bueno, IshikawaR, BuenoJT, Alemán DelPino, Pino Alemán T Del et al. Mapping solar magnetic fields from the photosphere to the base of the corona. Sci Adv, 7, eabe8406(2021).
[9] JM Jenkins, JenkinsJM, KeppensR, R Keppens. Resolving the solar prominence/filament paradox using the magnetic Rayleigh-Taylor instability. Nat Astron, 6, 942-950(2022).
[10] H Hotta, HottaH, KusanoK, K Kusano. Solar differential rotation reproduced with high-resolution simulation. Nat Astron, 5, 1100-1102(2021).
[11] CF Dong, DongCF, WangL, al HuangYMet, L Wang, DongCF, WangL, al HuangYMet, YM Huang et al. Reconnection-driven energy cascade in magnetohydrodynamic turbulence. Sci Adv, 8, eabn7627(2022).
[12] LE Boucheron, BoucheronLE, VincentT, al GrajedaJAet, T Vincent, BoucheronLE, VincentT, al GrajedaJAet, JA Grajeda et al. Solar active region magnetogram image dataset for studies of space weather. Sci Data, 10, 825(2023).
[13] MS Wheatland. Real-time solar coronal modelling. Nat Astron, 7, 1150-1151(2023).
[14] KF Li, LiKF, TungKK, KK Tung. Solar cycle as a distinct line of evidence constraining earth’s transient climate response. Nat Commun, 14, 8430(2023).
[15] der Lühe O von, Lühe vonder, SchmidtW, al SoltauDet, W Schmidt, Lühe vonder, SchmidtW, al SoltauDet, D Soltau et al. GREGOR: a 1.5m telescope for solar research. Astron Nachr, 322, 353-360(2001).
[16] P Jiang, JiangP, GanHQ, al YaoRet, HQ Gan, JiangP, GanHQ, al YaoRet, R Yao et al. FAST: the five-hundred-meter aperture spherical radio telescope. Engineering, 28, 21-25(2023).
[17] M Leslie. Webb space telescope hits its stride, dazzling astronomers. Engineering, 22, 3-6(2023).
[18] A Tritschler, TritschlerA, RimmeleTR, al BerukoffSet, TR Rimmele, TritschlerA, RimmeleTR, al BerukoffSet, S Berukoff et al. Daniel K. Inouye solar telescope: high-resolution observing of the dynamic sun. Astron Nachr, 337, 1064-1069(2016).
[19] HM Wang, WangHM, CaoWD, al LiuCet, WD Cao, WangHM, CaoWD, al LiuCet, C Liu et al. Witnessing magnetic twist with high-resolution observation from the 1.6-m new solar telescope. Nat Commun, 6, 7008(2015).
[20] V Yurchyshyn, YurchyshynV, CaoWD, al AbramenkoVet, WD Cao, YurchyshynV, CaoWD, al AbramenkoVet, V Abramenko et al. Rapid evolution of type II spicules observed in Goode solar telescope on-disk H
[21] CD Tagle, TagleCD, ColladosM, al LopezRet, M Collados, TagleCD, ColladosM, al LopezRet, R Lopez et al. First light of the integral field unit of GRIS on the GREGOR solar telescope. J Astron Instrum, 11, 2250014(2022).
[22] CH Rao, RaoCH, GuNT, al RaoXJet, NT Gu, RaoCH, GuNT, al RaoXJet, XJ Rao et al. First light of the 1.8-m solar telescope-CLST. Sci China Phys Mech Astron, 63, 109631(2020).
[23] NT Gu, GuNT, LiC, al ChengYTet, C Li, GuNT, LiC, al ChengYTet, YT Cheng et al. Thermal control for light-weighted primary mirrors of large ground-based solar telescopes. J Astron Telesc Instrum Syst, 5, 014005(2019).
[24] YF Cai, CaiYF, YangX, al XiangYYet, X Yang, CaiYF, YangX, al XiangYYet, YY Xiang et al. The co-alignment of winged H
[25] SA Matthews, MatthewsSA, ColladosM, al MathioudakisMet, M Collados, MatthewsSA, ColladosM, al MathioudakisMet, M Mathioudakis et al. The European solar telescope (EST). Proc SPIE, 9908, 990809(2016).
[26] Z Liu, LiuZ, DengYY, al JinZYet, YY Deng, LiuZ, DengYY, al JinZYet, ZY Jin et al. Introduction to the Chinese giant solar telescope. Proc SPIE, 8444, 844405(2012).
[27] Y Fu, FuY, YuanS, al JinZYet, S Yuan, FuY, YuanS, al JinZYet, ZY Jin et al. Polarization optical design of 8-meter Chinese giant solar telescope. Acta Astron Sin, 64, 8(2023).
[28] C Fang, FangC, GuBZ, al YuanXYet, BZ Gu, FangC, GuBZ, al YuanXYet, XY Yuan et al. 2.5m wide-field and high-resolution telescope. Sci China Phys Mech Astron, 49, 059603(2019).
[29] SS Hasan, HasanSS, SoltauD, al KärcherHet, D Soltau, HasanSS, SoltauD, al KärcherHet, H Kärcher et al. NLST: India’s national large solar telescope. Astron Nachr, 331, 628-635(2010).
[30] CH Rao, RaoCH, ZhuL, al ZhangLQet, L Zhu, RaoCH, ZhuL, al ZhangLQet, LQ Zhang et al. Development of solar adaptive optics. Opto-Electron Eng, 45, 170733(2018).
[31] T Berkefeld, BerkefeldT, SchmidtD, al SoltauDet, D Schmidt, BerkefeldT, SchmidtD, al SoltauDet, D Soltau et al. The GREGOR adaptive optics system. Astron Nachr, 333, 863-871(2012).
[32] B Femenía-Castella, Femenía-CastellaB, CagigalMN, al CabreraMBet, MN Cagigal, Femenía-CastellaB, CagigalMN, al CabreraMBet, MB Cabrera et al. Adaptive optics at the European solar telescope: status and future developments. Proc SPIE, 12185, 121851Z(2022).
[33] TR Rimmele, RimmeleTR, RadickRR, RR Radick. Solar adaptive optics at the national solar observatory. Proc SPIE, 3353, 72-81(1998).
[34] S Shumko, ShumkoS, GorceixN, al ChoiSet, N Gorceix, ShumkoS, GorceixN, al ChoiSet, S Choi et al. AO-308: the high-order adaptive optics system at big bear solar observatory. Proc SPIE, 9148, 914835(2014).
[35] CH Rao, RaoCH, ZhuL, al RaoXJet, L Zhu, RaoCH, ZhuL, al RaoXJet, XJ Rao et al. First generation solar adaptive optics system for 1-m new vacuum solar telescope at Fuxian solar observatory. Res Astron Astrophys, 16, 023(2016).
[36] CH Rao, RaoCH, ZhuL, al RaoXJet, L Zhu, RaoCH, ZhuL, al RaoXJet, XJ Rao et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1m new vacuum solar telescope at Fuxian solar observatory. Astrophys J, 833, 210(2016).
[37] CH Rao, RaoCH, ZhuL, al GuNTet, L Zhu, RaoCH, ZhuL, al GuNTet, NT Gu et al. A high-resolution multi-wavelength simultaneous imaging system with solar adaptive optics. Astron J, 154, 143(2017).
[38] TR Rimmele, RimmeleTR, WarnerM, al KeilSLet, M Warner, RimmeleTR, WarnerM, al KeilSLet, SL Keil et al. The
[39] S Das, DasS, RaoN, al PhanindraDVSet, N Rao, DasS, RaoN, al PhanindraDVSet, DVS Phanindra et al. SolarAccel: FPGA accelerated 2D cross-correlation of digital images: application to solar adaptive optics. J Astrophys Astron, 45, 16(2024).
[40] L Zhu, ZhuL, GuNT, al ChenSQet, NT Gu, ZhuL, GuNT, al ChenSQet, SQ Chen et al. Real time controller for 37-element low-order solar adaptive optics system at 1m new vacuum solar telescope. Proc SPIE, 8415, 84150V(2012).
[42] G Brusa, BrusaG, RiccardiA, al WildiFPet, A Riccardi, BrusaG, RiccardiA, al WildiFPet, FP Wildi et al. MMT adaptive secondary: first AO closed-loop results. Proc SPIE, 5169, 26-36(2003).
[43] P Salinari, SalinariP, SandlerDG, DG Sandler. High-order adaptive secondary mirrors: where are we. Proc SPIE, 3353, 742-753(1998).
[44] JA Johnson, JohnsonJA, VazA, al MontoyaMet, A Vaz, JohnsonJA, VazA, al MontoyaMet, M Montoya et al. Tuning the MAPS adaptive secondary mirror: actuator control, PID tuning, power spectra, and failure diagnosis. Proc SPIE, 13149, 131490H(2024).
[45] S Esposito, EspositoS, TozziA, al FerruzziDet, A Tozzi, EspositoS, TozziA, al FerruzziDet, D Ferruzzi et al. First-light adaptive optics system for large binocular telescope. Proc SPIE, 4839, 164-173(2003).
[46] S Esposito, EspositoS, TozziA, al PuglisiAet, A Tozzi, EspositoS, TozziA, al PuglisiAet, A Puglisi et al. First light AO system for LBT: toward on-sky operation. Proc SPIE, 6272, 62720A(2006).
[47] A Riccardi, RiccardiA, XomperoM, al BriguglioRet, M Xompero, RiccardiA, XomperoM, al BriguglioRet, R Briguglio et al. The adaptive secondary mirror for the large binocular telescope: optical acceptance test and preliminary on-sky commissioning results. Proc SPIE, 7736, 77362C(2010).
[48] R Arsenault, ArsenaultR, BiasiR, al GallieniDet, R Biasi, ArsenaultR, BiasiR, al GallieniDet, D Gallieni et al. A deformable secondary mirror for the VLT. Proc SPIE, 6272, 62720V(2006).
[49] P Hibon, HibonP, DuhouxP, P Duhoux. Improving the telescope guiding with field stabilization on the very large telescope/unit telescopes. J Astron Telesc Instrum Syst, 9, 027002(2023).
[51] PM Hinz, HinzPM, Bowens-RubinR, al BaranecCet, R Bowens-Rubin, HinzPM, Bowens-RubinR, al BaranecCet, C Baranec et al. Developing adaptive secondary mirror concepts for the APF and W. M. Keck observatory based on HVR technology. Proc SPIE, 11448, 114485U(2020).
[52] YM Guo, GuoYM, ChenKL, al ZhouJHet, KL Chen, GuoYM, ChenKL, al ZhouJHet, JH Zhou et al. High-resolution visible imaging with piezoelectric deformable secondary mirror: experimental results at the 1.8-m adaptive telescope. Opto-Electron Adv, 6, 230039(2023).
[53] S Thomas, ThomasS, FuscoT, al TokovininAet, T Fusco, ThomasS, FuscoT, al TokovininAet, A Tokovinin et al. Comparison of centroid computation algorithms in a Shack-Hartmann sensor. Mon Not R Astron Soc, 371, 323-336(2006).
[54] J Mocci, MocciJ, BusatoF, al BombieriNet, F Busato, MocciJ, BusatoF, al BombieriNet, N Bombieri et al. Efficient implementation of the Shack–Hartmann centroid extraction for edge computing. J Opt Soc Am A, 37, 1548-1556(2020).
[55] ZC Zhou, ZhouZC, ZhangLQ, al ZhuLet, LQ Zhang, ZhouZC, ZhangLQ, al ZhuLet, L Zhu et al. Comparison of correlation algorithms with correlating Shack–Hartmann wave-front images. Proc SPIE, 10026, 100261B(2016).
[56] ZB Ke, KeZB, ZhangLQ, al YangYet, LQ Zhang, KeZB, ZhangLQ, al YangYet, Y Yang et al. Performance analysis and optimization of solar multiconjugate adaptive optics systems. Mon Not R Astron Soc, 530, 307-317(2024).
[57] Y Yang, YangY, ZhangL, al YanNet, L Zhang, YangY, ZhangL, al YanNet, N Yan et al. Ground-layer adaptive optics for the 2.5 m wide-field and high-resolution solar telescope. Res Astron Astrophys, 24, 035018(2024).
[58] ZJ Cui, CuiZJ, QiWF, LiuYX, WF Qi, CuiZJ, QiWF, LiuYX, YX Liu. A fast image template matching algorithm based on normalized cross correlation. J Phys Conf Ser, 1693, 012163(2020).
[59] SH Liu, LiuSH, ZhongH, al LiYQet, H Zhong, LiuSH, ZhongH, al LiYQet, YQ Li et al. Fast and highly accurate zonal wavefront reconstruction from multi-directional slope and curvature information using subregion cancelation. Appl Sci, 14, 3476(2024).
[60] I Mochi, MochiI, GoldbergKA, KA Goldberg. Modal wavefront reconstruction from its gradient. Appl Opt, 54, 3780-3785(2015).
[61] ZA Noel, NoelZA, BukowskiTJ, al GordeyevSet, TJ Bukowski, NoelZA, BukowskiTJ, al GordeyevSet, S Gordeyev et al. Shack-Hartmann wavefront reconstruction by deep learning neural network for adaptive optics. Proc SPIE, 12693, 126930G(2023).
[62] AN Kolmogorov. Dissipation of energy in the locally isotropic turbulence. Proc R Soc Lond A Math Phys Sci, 434, 15-17(1991).
[63] RK Tyson. Principles of Adaptive Optics(1998).
[65] F Wöger, WögerF, UitenbroekH, al TritschlerAet, H Uitenbroek, WögerF, UitenbroekH, al TritschlerAet, A Tritschler et al. The ATST visible broadband imager: a case study for real-time image reconstruction and optimal data handling. Proc SPIE, 7735, 773521(2010).
Get Citation
Copy Citation Text
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao. Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations[J]. Opto-Electronic Advances, 2025, 8(5): 250025
Received: Feb. 16, 2025
Accepted: Apr. 21, 2025
Published Online: Aug. 5, 2025
The Author Email: