[1] T Rimmele, RimmeleT, KeilS, DoolingD, S Keil, RimmeleT, KeilS, DoolingD, D Dooling. Building the world’s largest optical solar telescope(2007).
[2] D MacTaggart, MacTaggartD, PriorC, al RaphaldiniBet, C Prior, MacTaggartD, PriorC, al RaphaldiniBet, B Raphaldini et al. Direct evidence that twisted flux tube emergence creates solar active regions. Nat Commun, 12, 6621(2021).
[3] M Stangalini, StangaliniM, VerthG, al FedunVet, G Verth, StangaliniM, VerthG, al FedunVet, V Fedun et al. Large scale coherent magnetohydrodynamic oscillations in a sunspot. Nat Commun, 13, 479(2022).
[4] D Yuan, YuanD, FuLB, al CaoWDet, LB Fu, YuanD, FuLB, al CaoWDet, WD Cao et al. Transverse oscillations and an energy source in a strongly magnetized sunspot. Nat Astron, 7, 856-866(2023).
[5] M Stangalini. Wave energy in the solar atmosphere. Nat Astron, 7, 761-762(2023).
[6] D Clery. ‘Campfires’ may drive heating of solar atmosphere. Science, 372, 557-558(2021).
[7] XL Yan, YanXL, XueZK, al JiangCWet, ZK Xue, YanXL, XueZK, al JiangCWet, CW Jiang et al. Fast plasmoid-mediated reconnection in a solar flare. Nat Commun, 13, 640(2022).
[8] R Ishikawa, IshikawaR, BuenoJT, Alemán DelPino, JT Bueno, IshikawaR, BuenoJT, Alemán DelPino, Pino Alemán T Del et al. Mapping solar magnetic fields from the photosphere to the base of the corona. Sci Adv, 7, eabe8406(2021).
[9] JM Jenkins, JenkinsJM, KeppensR, R Keppens. Resolving the solar prominence/filament paradox using the magnetic Rayleigh-Taylor instability. Nat Astron, 6, 942-950(2022).
[10] H Hotta, HottaH, KusanoK, K Kusano. Solar differential rotation reproduced with high-resolution simulation. Nat Astron, 5, 1100-1102(2021).
[11] CF Dong, DongCF, WangL, al HuangYMet, L Wang, DongCF, WangL, al HuangYMet, YM Huang et al. Reconnection-driven energy cascade in magnetohydrodynamic turbulence. Sci Adv, 8, eabn7627(2022).
[12] LE Boucheron, BoucheronLE, VincentT, al GrajedaJAet, T Vincent, BoucheronLE, VincentT, al GrajedaJAet, JA Grajeda et al. Solar active region magnetogram image dataset for studies of space weather. Sci Data, 10, 825(2023).
[13] MS Wheatland. Real-time solar coronal modelling. Nat Astron, 7, 1150-1151(2023).
[14] KF Li, LiKF, TungKK, KK Tung. Solar cycle as a distinct line of evidence constraining earth’s transient climate response. Nat Commun, 14, 8430(2023).
[15] der Lühe O von, Lühe vonder, SchmidtW, al SoltauDet, W Schmidt, Lühe vonder, SchmidtW, al SoltauDet, D Soltau et al. GREGOR: a 1.5m telescope for solar research. Astron Nachr, 322, 353-360(2001).
[16] P Jiang, JiangP, GanHQ, al YaoRet, HQ Gan, JiangP, GanHQ, al YaoRet, R Yao et al. FAST: the five-hundred-meter aperture spherical radio telescope. Engineering, 28, 21-25(2023).
[17] M Leslie. Webb space telescope hits its stride, dazzling astronomers. Engineering, 22, 3-6(2023).
[18] A Tritschler, TritschlerA, RimmeleTR, al BerukoffSet, TR Rimmele, TritschlerA, RimmeleTR, al BerukoffSet, S Berukoff et al. Daniel K. Inouye solar telescope: high-resolution observing of the dynamic sun. Astron Nachr, 337, 1064-1069(2016).
[19] HM Wang, WangHM, CaoWD, al LiuCet, WD Cao, WangHM, CaoWD, al LiuCet, C Liu et al. Witnessing magnetic twist with high-resolution observation from the 1.6-m new solar telescope. Nat Commun, 6, 7008(2015).
[20] V Yurchyshyn, YurchyshynV, CaoWD, al AbramenkoVet, WD Cao, YurchyshynV, CaoWD, al AbramenkoVet, V Abramenko et al. Rapid evolution of type II spicules observed in Goode solar telescope on-disk Hα images. Astrophys J Lett, 891, L21(2020).
[21] CD Tagle, TagleCD, ColladosM, al LopezRet, M Collados, TagleCD, ColladosM, al LopezRet, R Lopez et al. First light of the integral field unit of GRIS on the GREGOR solar telescope. J Astron Instrum, 11, 2250014(2022).
[22] CH Rao, RaoCH, GuNT, al RaoXJet, NT Gu, RaoCH, GuNT, al RaoXJet, XJ Rao et al. First light of the 1.8-m solar telescope-CLST. Sci China Phys Mech Astron, 63, 109631(2020).
[23] NT Gu, GuNT, LiC, al ChengYTet, C Li, GuNT, LiC, al ChengYTet, YT Cheng et al. Thermal control for light-weighted primary mirrors of large ground-based solar telescopes. J Astron Telesc Instrum Syst, 5, 014005(2019).
[24] YF Cai, CaiYF, YangX, al XiangYYet, X Yang, CaiYF, YangX, al XiangYYet, YY Xiang et al. The co-alignment of winged Hα data observed by the new vacuum solar telescope. Res Astron Astrophys, 22, 065010(2022).
[25] SA Matthews, MatthewsSA, ColladosM, al MathioudakisMet, M Collados, MatthewsSA, ColladosM, al MathioudakisMet, M Mathioudakis et al. The European solar telescope (EST). Proc SPIE, 9908, 990809(2016).
[26] Z Liu, LiuZ, DengYY, al JinZYet, YY Deng, LiuZ, DengYY, al JinZYet, ZY Jin et al. Introduction to the Chinese giant solar telescope. Proc SPIE, 8444, 844405(2012).
[27] Y Fu, FuY, YuanS, al JinZYet, S Yuan, FuY, YuanS, al JinZYet, ZY Jin et al. Polarization optical design of 8-meter Chinese giant solar telescope. Acta Astron Sin, 64, 8(2023).
[28] C Fang, FangC, GuBZ, al YuanXYet, BZ Gu, FangC, GuBZ, al YuanXYet, XY Yuan et al. 2.5m wide-field and high-resolution telescope. Sci China Phys Mech Astron, 49, 059603(2019).
[29] SS Hasan, HasanSS, SoltauD, al KärcherHet, D Soltau, HasanSS, SoltauD, al KärcherHet, H Kärcher et al. NLST: India’s national large solar telescope. Astron Nachr, 331, 628-635(2010).
[30] CH Rao, RaoCH, ZhuL, al ZhangLQet, L Zhu, RaoCH, ZhuL, al ZhangLQet, LQ Zhang et al. Development of solar adaptive optics. Opto-Electron Eng, 45, 170733(2018).
[31] T Berkefeld, BerkefeldT, SchmidtD, al SoltauDet, D Schmidt, BerkefeldT, SchmidtD, al SoltauDet, D Soltau et al. The GREGOR adaptive optics system. Astron Nachr, 333, 863-871(2012).
[32] B Femenía-Castella, Femenía-CastellaB, CagigalMN, al CabreraMBet, MN Cagigal, Femenía-CastellaB, CagigalMN, al CabreraMBet, MB Cabrera et al. Adaptive optics at the European solar telescope: status and future developments. Proc SPIE, 12185, 121851Z(2022).
[33] TR Rimmele, RimmeleTR, RadickRR, RR Radick. Solar adaptive optics at the national solar observatory. Proc SPIE, 3353, 72-81(1998).
[34] S Shumko, ShumkoS, GorceixN, al ChoiSet, N Gorceix, ShumkoS, GorceixN, al ChoiSet, S Choi et al. AO-308: the high-order adaptive optics system at big bear solar observatory. Proc SPIE, 9148, 914835(2014).
[35] CH Rao, RaoCH, ZhuL, al RaoXJet, L Zhu, RaoCH, ZhuL, al RaoXJet, XJ Rao et al. First generation solar adaptive optics system for 1-m new vacuum solar telescope at Fuxian solar observatory. Res Astron Astrophys, 16, 023(2016).
[36] CH Rao, RaoCH, ZhuL, al RaoXJet, L Zhu, RaoCH, ZhuL, al RaoXJet, XJ Rao et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1m new vacuum solar telescope at Fuxian solar observatory. Astrophys J, 833, 210(2016).
[37] CH Rao, RaoCH, ZhuL, al GuNTet, L Zhu, RaoCH, ZhuL, al GuNTet, NT Gu et al. A high-resolution multi-wavelength simultaneous imaging system with solar adaptive optics. Astron J, 154, 143(2017).
[38] TR Rimmele, RimmeleTR, WarnerM, al KeilSLet, M Warner, RimmeleTR, WarnerM, al KeilSLet, SL Keil et al. The Daniel K. Inouye solar telescope-observatory overview. Sol Phys, 295, 172(2020).
[39] S Das, DasS, RaoN, al PhanindraDVSet, N Rao, DasS, RaoN, al PhanindraDVSet, DVS Phanindra et al. SolarAccel: FPGA accelerated 2D cross-correlation of digital images: application to solar adaptive optics. J Astrophys Astron, 45, 16(2024).
[40] L Zhu, ZhuL, GuNT, al ChenSQet, NT Gu, ZhuL, GuNT, al ChenSQet, SQ Chen et al. Real time controller for 37-element low-order solar adaptive optics system at 1m new vacuum solar telescope. Proc SPIE, 8415, 84150V(2012).
[42] G Brusa, BrusaG, RiccardiA, al WildiFPet, A Riccardi, BrusaG, RiccardiA, al WildiFPet, FP Wildi et al. MMT adaptive secondary: first AO closed-loop results. Proc SPIE, 5169, 26-36(2003).
[43] P Salinari, SalinariP, SandlerDG, DG Sandler. High-order adaptive secondary mirrors: where are we. Proc SPIE, 3353, 742-753(1998).
[44] JA Johnson, JohnsonJA, VazA, al MontoyaMet, A Vaz, JohnsonJA, VazA, al MontoyaMet, M Montoya et al. Tuning the MAPS adaptive secondary mirror: actuator control, PID tuning, power spectra, and failure diagnosis. Proc SPIE, 13149, 131490H(2024).
[45] S Esposito, EspositoS, TozziA, al FerruzziDet, A Tozzi, EspositoS, TozziA, al FerruzziDet, D Ferruzzi et al. First-light adaptive optics system for large binocular telescope. Proc SPIE, 4839, 164-173(2003).
[46] S Esposito, EspositoS, TozziA, al PuglisiAet, A Tozzi, EspositoS, TozziA, al PuglisiAet, A Puglisi et al. First light AO system for LBT: toward on-sky operation. Proc SPIE, 6272, 62720A(2006).
[47] A Riccardi, RiccardiA, XomperoM, al BriguglioRet, M Xompero, RiccardiA, XomperoM, al BriguglioRet, R Briguglio et al. The adaptive secondary mirror for the large binocular telescope: optical acceptance test and preliminary on-sky commissioning results. Proc SPIE, 7736, 77362C(2010).
[48] R Arsenault, ArsenaultR, BiasiR, al GallieniDet, R Biasi, ArsenaultR, BiasiR, al GallieniDet, D Gallieni et al. A deformable secondary mirror for the VLT. Proc SPIE, 6272, 62720V(2006).
[49] P Hibon, HibonP, DuhouxP, P Duhoux. Improving the telescope guiding with field stabilization on the very large telescope/unit telescopes. J Astron Telesc Instrum Syst, 9, 027002(2023).
[51] PM Hinz, HinzPM, Bowens-RubinR, al BaranecCet, R Bowens-Rubin, HinzPM, Bowens-RubinR, al BaranecCet, C Baranec et al. Developing adaptive secondary mirror concepts for the APF and W. M. Keck observatory based on HVR technology. Proc SPIE, 11448, 114485U(2020).
[52] YM Guo, GuoYM, ChenKL, al ZhouJHet, KL Chen, GuoYM, ChenKL, al ZhouJHet, JH Zhou et al. High-resolution visible imaging with piezoelectric deformable secondary mirror: experimental results at the 1.8-m adaptive telescope. Opto-Electron Adv, 6, 230039(2023).
[53] S Thomas, ThomasS, FuscoT, al TokovininAet, T Fusco, ThomasS, FuscoT, al TokovininAet, A Tokovinin et al. Comparison of centroid computation algorithms in a Shack-Hartmann sensor. Mon Not R Astron Soc, 371, 323-336(2006).
[54] J Mocci, MocciJ, BusatoF, al BombieriNet, F Busato, MocciJ, BusatoF, al BombieriNet, N Bombieri et al. Efficient implementation of the Shack–Hartmann centroid extraction for edge computing. J Opt Soc Am A, 37, 1548-1556(2020).
[55] ZC Zhou, ZhouZC, ZhangLQ, al ZhuLet, LQ Zhang, ZhouZC, ZhangLQ, al ZhuLet, L Zhu et al. Comparison of correlation algorithms with correlating Shack–Hartmann wave-front images. Proc SPIE, 10026, 100261B(2016).
[56] ZB Ke, KeZB, ZhangLQ, al YangYet, LQ Zhang, KeZB, ZhangLQ, al YangYet, Y Yang et al. Performance analysis and optimization of solar multiconjugate adaptive optics systems. Mon Not R Astron Soc, 530, 307-317(2024).
[57] Y Yang, YangY, ZhangL, al YanNet, L Zhang, YangY, ZhangL, al YanNet, N Yan et al. Ground-layer adaptive optics for the 2.5 m wide-field and high-resolution solar telescope. Res Astron Astrophys, 24, 035018(2024).
[58] ZJ Cui, CuiZJ, QiWF, LiuYX, WF Qi, CuiZJ, QiWF, LiuYX, YX Liu. A fast image template matching algorithm based on normalized cross correlation. J Phys Conf Ser, 1693, 012163(2020).
[59] SH Liu, LiuSH, ZhongH, al LiYQet, H Zhong, LiuSH, ZhongH, al LiYQet, YQ Li et al. Fast and highly accurate zonal wavefront reconstruction from multi-directional slope and curvature information using subregion cancelation. Appl Sci, 14, 3476(2024).
[60] I Mochi, MochiI, GoldbergKA, KA Goldberg. Modal wavefront reconstruction from its gradient. Appl Opt, 54, 3780-3785(2015).
[61] ZA Noel, NoelZA, BukowskiTJ, al GordeyevSet, TJ Bukowski, NoelZA, BukowskiTJ, al GordeyevSet, S Gordeyev et al. Shack-Hartmann wavefront reconstruction by deep learning neural network for adaptive optics. Proc SPIE, 12693, 126930G(2023).
[62] AN Kolmogorov. Dissipation of energy in the locally isotropic turbulence. Proc R Soc Lond A Math Phys Sci, 434, 15-17(1991).
[63] RK Tyson. Principles of Adaptive Optics(1998).
[65] F Wöger, WögerF, UitenbroekH, al TritschlerAet, H Uitenbroek, WögerF, UitenbroekH, al TritschlerAet, A Tritschler et al. The ATST visible broadband imager: a case study for real-time image reconstruction and optimal data handling. Proc SPIE, 7735, 773521(2010).