Journal of Quantum Optics, Volume. 29, Issue 4, 40203(2023)
Normal-mode Splitting in the Optomechanical System: Effect of Quadratic Coupling and the Parametric Amplifier
[1] [1] MA X, VIENNOT J J, KOTLER S, et al. Non-classical energy squeezing of a macro-scopic mechanical oscillator[J]. Nat Phys, 2021, 17(3):1-5. DOI: https://doi.org/10.1038/s41567-020-01102-1.
[2] [2] LI B, OU L, LEI Y, et al. Cavity optomechanical sensing[J]. Nanophotonics, 2021, 10:2799. DOI: 10.1515/nanoph-2021-0256.
[3] [3] HE Y T, FENG Z J, JING Y W, et al. High-sensitivity force sensing using a phonon laser in an active levitated optomechanical system[J]. Opt Express, 2023, 31(23):37507-37515. DOI: https://doi.org/10.1364/OE.502812.
[4] [4] XIONG B, CHAO S L, SHAN C J, et al. Optomechanical squeezing with pulse modulation[J]. Optics Letters, 2022, 47(21):5545-5548. DOI: 10.1364/OL.471230.
[6] [6] ZHANG L, SONG Z D. Modification on static responses of a nano-oscillator by quadratic optomechanical couplings[J]. Sci China (Phys Mech Astron), 2014, 57:880. DOI: 10.1007/s11433-014-5449-6.
[7] [7] FONSECA P Z G, ARANAS E B, MILLEN J, et al. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles[J]. Phys Rev Lett, 2016, 117:173602. DOI: 10.1103/PhysRevLett.117.173602.
[8] [8] HERTZBERG J, ROCHELEAU T, NDUKUM T, et al. Back-actionevading measurements of nanomechanical motion[J]. Nature Physics, 2010, 6(3):213-217. DOI: https://doi.org/10.1038/nphys1479.
[9] [9] FONSECA P Z G, ARANAS E B, MILLEN J, et al. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles[J]. Phys Rev Lett, 2016, 117:173602. DOI: 10.1103/PhysRevLett.117.173602.
[10] [10] ZHANG J S, LI M C, CHEN A X. Enhancing quadratic optomechanical coupling via a nonlinear medium and lasers[J]. Phys Rev A, 2019, 99:013843. DOI: 10.1103/PhysRevA.99.013843.
[11] [11] LUDWIG M, SAFAVI-NAEINI A H, PAINTER O, et al. Enhanced Quantum Nonlinearities in a Two-Mode Optomechanical System[J]. Phys Rev Lett, 2012, 109:063601. DOI: 10.1103/PhysRevLett.109.063601.
[12] [12] GARG D, MANJU, DASGUPTA S, et al. Quantum synchronization and entanglement of indirectly coupled mechanical oscillators in cavity optomechanics: A numerical study[J]. Physics Letters A, 2023, 457:128557. DOI: 10.1016/j.physleta.2022.128557.
[13] [13] MAHAJAN S, AGGARWAL N, BHATTACHERJEE A B. Strong squeezing and robust entanglement in a second-order coupled optomechanical cavity assisted by a Kerr nonlinear medium[J]. Journal of Nonlinear Optical Physics & Materials, 2023, 2350063. DOI: 10.1142/S0218863523500637.
[14] [14] GU W J, ZHEN Y, YAN Y, et al. Generation of Optical and Mechanical Squeezing in the Linear-and-Quadratic Optomechanics[J]. Annalen der Physik, 2019, 531(8):1800399. DOI: https://doi.org/10.1002/andp.201800399.
[15] [15] ZHANG L, KONG H Y. Self-sustained oscillation and harmonic generation in optomechanical systems with quadratic couplings[J]. Phys Rev A, 2014, 89:023847. DOI: 10.1103/PhysRevA.89.023847.
[16] [16] SATYA SAINADH U, ANIL KUMAR M. Effects of linear and quadratic dispersive couplings on optical squeezing in an optomechanical system[J]. Phys Rev A, 2015, 92:033824. DOI: 10.1103/PhysRevA.92.033824.
[17] [17] DOBRINDT J M, WILSON-RAE I, KIPPENBERG T J. Parametric Normal-Mode Splitting in Cavity Optomechanics[J]. Phys Rev Lett, 2008, 101:263602. DOI: 10.1103/PhysRevLett.101.263602.
[18] [18] HUANG S M, AGARWAL G S. Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplififier cavity[J]. Phys Rev A, 2009, 80:033807. DOI: 10.1103/PhysRevA.80.033807.
[20] [20] SATYA SAINADH U, ANIL KUMA M. Mimicking a hybrid-optomechanical system using an intrinsic quadratic coupling in conventional optomechanical system[J]. Journal of Modern Optics, 2019, 66(5):494-501. DOI: https://doi.org/10.1080/09500340.2018.1549286.
[21] [21] DEJESUS EDMUND X, KAUFMAN C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations[J]. Phys Rev A, 1987, 35(12):5288-5290. DOI: 10.1103/PhysRevA.35.5288.
[22] [22] GROBLACHER S, HAMMERER K, VANNER M R, et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field[J]. Nature (London), 2009, 460(7256):724-727. DOI: https://doi.org/10.1038/nature08171.
[23] [23] L X Y, WU Y, JOHANSSON J R, et al. Squeezed Optomechanics with Phase-Matched Amplification and Dissipation[J]. Phys Rev Lett, 2015, 114:093602. DOI: 10.1103/PhysRevLett.114.093602.
[24] [24] ZHANG J S, LI M C, CHEN A X. Enhancing quadratic optomechanical coupling via a nonlinear medium and lasers[J]. Phys Rev A, 2019, 99:013843. DOI: 10.1103/PhysRevA.99.013843.
Get Citation
Copy Citation Text
HAN Yan, CHEN Bin, CHEN Bo, GUO Yan-qiang. Normal-mode Splitting in the Optomechanical System: Effect of Quadratic Coupling and the Parametric Amplifier[J]. Journal of Quantum Optics, 2023, 29(4): 40203
Received: Jun. 7, 2023
Accepted: Aug. 7, 2025
Published Online: Aug. 7, 2025
The Author Email: