Chinese Journal of Lasers, Volume. 41, Issue 1, 102003(2014)
Tight Focusing of a Radially Polarized Coherent Beams Array
[1] [1] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications[J]. Adv in Opt Photon, 2009, 1(1): 1-57.
[2] [2] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Phys Rev Lett, 2003, 91(23): 233901.
[3] [3] Chen Huifang, Liu Tao, Zhang Zaixuan. Sharper focus of radially polarized beam with a continuous phase filter[J]. Chinese J Lasers, 2012, 39(6): 0616001.
[4] [4] Kim W, Park N, Yoon Y, et al.. Investigation of near-field imaging characteristics of radial polarization for application to optical data storage[J]. Opt Rev, 2007, 14(4): 236-242.
[5] [5] Youngworth K S, Brown T G. Inhomogeneous polarization in scanning optical microscopy[C]. SPIE, 2000, 3919: 75-85.
[6] [6] Tang W T, Yew E Y S, Sheppard C J R. Polarization conversion in confocal microscopy with radially polarized illumination[J]. Opt Lett, 2009, 34(14): 2147-2149.
[7] [7] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Opt Express, 2000, 7(2): 77-87.
[9] [9] Zhan Q. Trapping metallic Rayleigh particles with radial polarization[J]. Opt Express, 2004, 12(15): 3377-3382.
[10] [10] Yu Yongjiang, Chen Jiannong, Yan Jinliang, et al.. Longitudinally polarized subwavelength beam generated by focusing radially modulated Bessel-Gaussian beam[J]. Acta Physica Sinica, 2011, 60(4): 044205.
[11] [11] Varin C, Piché M. Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams[J]. Appl Phys B, 2002, 74(suppl): S83-S88.
[12] [12] Cicchitelli L, Hora H. Longitudinal field components for laser beams in vacuum[J]. Phys Rev A, 1990, 41(7): 3727-3732.
[13] [13] Hayazawa N, Saito Y, Kawata S. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy[J]. Appl Phys Lett, 2004, 85(25): 6239-6241.
[14] [14] Kozawa Y, Sato S. Focusing property of a double-ring-shaped radially polarized beam[J]. Opt Lett, 2006, 31(6): 820-822.
[15] [15] Zhang Z, Pu J, Wang X. Tight focusing of radially and azimuthally polarized vortex beams through a dielectric interface[J]. Chin Phys Lett, 2008, 25(5): 1664-1667.
[16] [16] Wang H, Shi L, Lukyanchuk B, et al.. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photon, 2008, 2(8): 501-505.
[17] [17] Sheppard C J R, Yew E Y S. Performance parameters for focusing of radial polarization[J]. Opt Lett, 2008, 33(5): 497-499.
[18] [18] Rajesh K B, Suresh N V, Anbarasan P M, et al.. Tight focusing of double ring shaped radially polarized beam with high NA lens axicon[J]. Opt Laser Technol, 2011, 43(7): 1037-1040.
[19] [19] Liu T, Tan J, Liu J. Tighter focusing of amplitude modulated radially polarized vector beams in ultra-high numerical aperture lens systems[J]. Opt Commun, 2013, 294: 21-23.
[20] [20] Li J, Ueda K, Musha M, et al.. Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber[J]. Opt Lett, 2007, 32(11): 1360-1362.
[21] [21] Kozawa Y, Yonezawa K, Sato S. Radially polarized laser beam from a Nd:YAG laser cavity with a c-cut YVO4 crystal[J]. Appl Phys B, 2007, 88(1): 43-46.
[22] [22] Bomzon Z, Biener G, Kleiner V, et al.. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings[J]. Opt Lett, 2002, 27(5): 285-287.
[23] [23] Wang X, Ding J, Ni W, et al.. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Opt Lett, 2007, 32(24): 3549-3551.
[24] [24] Liu S, Li P, Peng T, et al.. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer[J]. Opt Express, 2012, 20(19): 21715-21721.
[25] [25] Dong X, Weng X, Guo H, et al.. Generation of radially polarized beams using spatial light modulator[J]. Optik, 2012, 123(5): 391-394.
[27] [27] Kurti R S, Halterman K, Shori R K, et al.. Discrete cylindrical vector beam generation from an array of optical fibers[J]. Opt Express, 2009, 17(16): 13982-13988.
[28] [28] Richards B, Wolf E. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system[J]. Proc R Soc Lond A, 1959, 253(1274): 358-379.
[29] [29] Pereira S F, van de Nes A S. Superresolution by means of polarization, phase and amplitude pupil masks[J]. Opt Commun, 2004, 234(1-6): 119-124.
[30] [30] Lerman G M, Levy U. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization[J]. Opt Lett, 2007, 32(15): 2194-2196.
[31] [31] Sheppard C J R, Choudhury A. Annular pupils, radial polarization, and superresolution[J]. Appl Opt, 2004, 43(22): 4322-4327.
Get Citation
Copy Citation Text
Ren Guangsen, Wu Wuming, Ning Yu, Sun Quan, Xu Xiaojun. Tight Focusing of a Radially Polarized Coherent Beams Array[J]. Chinese Journal of Lasers, 2014, 41(1): 102003
Category: Laser physics
Received: Jul. 12, 2013
Accepted: --
Published Online: Dec. 24, 2013
The Author Email: Guangsen Ren (ren_gs@yeah.net)