Acta Optica Sinica, Volume. 45, Issue 15, 1510003(2025)
Difference Aware Guided Boundary Transformer Network for Childhood Pneumonia CT Image Segmentation
Fig. 5. Confusion matrices for the four metrics under different hyperparameter configurations on the Child-P dataset. (a) JI; (b) SE; (c) MCC; (d) HD
Fig. 6. Segmentation results (up) and their confidence maps (down) on the Child-P dataset. (a) Label; (b) DBTU-Net; (c) U-Net; (d) U-Net++; (e) TransDeepLab; (f) CASCADE; (g) MEGANet
Fig. 7. Segmentation results (up) and their confidence maps (down) on the COVID and MosMed dataset. (a) Label; (b) DBTU-Net; (c) U-Net; (d) U-Net++; (e) TransDeepLab; (f) CASCADE; (g) MEGANet
Fig. 8. Local segmentation results and heatmaps of different methods on three datasets. (a) Original images; (b) local label; (c) proposed method; (d) U-Net; (e) CASCADE; (f) MEGANet
|
|
|
|
|
Get Citation
Copy Citation Text
Jia Lü, Mingkai Yu, Xin Chen, Ling He. Difference Aware Guided Boundary Transformer Network for Childhood Pneumonia CT Image Segmentation[J]. Acta Optica Sinica, 2025, 45(15): 1510003
Category: Image Processing
Received: Mar. 18, 2025
Accepted: May. 6, 2025
Published Online: Aug. 8, 2025
The Author Email: Jia Lü (lvjia@cqnu.edu.cn), Ling He (heling508@sina.com)
CSTR:32393.14.AOS250760