Infrared and Laser Engineering, Volume. 46, Issue 11, 1103008(2017)
Stochastic Optical Reconstruction Microscopy and its application
[1] [1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters, 1994, 19(11): 780-782.
[2] [2] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. Journal of Microscopy, 2000, 198(2): 82-87.
[3] [3] Wei Tongda, Zhang Yunhai, Yang Haomin. Super resolution imaging technology of stimulated emission depletion[J]. Infrared and Laser Engineering, 2016, 45(6): 0624001. (in Chinese)
[4] [4] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science, 2006, 313(5793): 1642-1645.
[5] [5] Bates M, Huang B, Rust M J, et al. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods, 2006, 3(10): 793-796.
[6] [6] Xu K, Babcock H P, Zhuang X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton [J]. Nature Methods, 2012, 9(2): 185-188.
[7] [7] Hinterdorfer P, Oijen A. Handbook of Single-Molecule Biophysics [M]. New York: Springer, 2009.
[8] [8] Herbert S, Soares H, Zimmer C, et al. Single-molecule localization super-resolution microscopy: deeper and faster [J]. Microscopy and Microanalysis, 2012, 18(6): 1419-1429.
[9] [9] Bates M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes [J]. Science, 2007, 317(5845): 1749-1753.
[10] [10] Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy [J]. Science, 2008, 319(5864): 810-813.
[11] [11] French J B, Jones S A, Deng H, et al. Spatial colocalization and functional link of purinosomes with mitochondria [J]. Science, 2016, 351(6274): 733-737.
[12] [12] Pan Leiting, Hu Fen, Zhang Xinzheng, et al. Multicolor single-molecule localization super-resolution microscopy [J]. Acta Optica Sinica, 2017, 37(3): 0318010. (in Chinese)
[13] [13] Bossi M, Folling J, Belov V N, et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species [J]. Nano Letters, 2008, 8(8): 2463-2468.
[14] [14] Zhengyang Z, Samuel J K, Margaret H, et al. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy [J]. Nature Methods, 2015, 12(10): 935-938.
[15] [15] Dong B, Luay A, Urban B E, et al. Super-resolution spectroscopic microscopy via photon localization [J]. Nature Communications, 2016, 7: 12290.
[16] [16] Shechtman Y, Weiss L E, Backer A S, et al. Multicolour localization microscopy by point-spread-function engineering [C]//SPIE Bios, 2016, 9714: 971400L.
[17] [17] Hauser M, Wojcik M, Kim D, et al. Correlative super-resolution microscopy: new dimensions and new opportunities [J]. Chemical Review, 2017, 117: 7428-7456.
[18] [18] Watanabe S, Punge A, Hollopeter G, et al. Protein localization in electron micrographs using fluorescence nanoscopy [J]. Nature Methods, 2011, 8(1): 80-84.
[19] [19] Suleiman H, Zhang L, Roth R, et al. Correction: Nanoscale protein architecture of the kidney glomerular basement membrane [J]. Elife, 2013, 2(2): e01149.
[20] [20] Wojcik M, Hauser M, Wan L, et al. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells [J]. Nature Communications, 2015, 6(3): 7384.
[21] [21] Loschberger A, Franke C, Krohne G, et al. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution [J]. Journal of Cell Science, 2014, 127(20): 4351-4355.
[22] [22] Xu K, Zhong G, Zhuang X. Actin, spectrin and associated proteins form a periodic cytoskeletal structure in axons [J]. Science, 2013, 339(6118): 452-456.
[23] [23] Moon S, Yan R, Kenny S J, et al. Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes [J]. Journal of the American Chemical Society, 2017, 139(32): 10944-10947.
[24] [24] Kim D, Zhang Z, Xu K. Spectrally resolved super-resolution microscopy unveils multipath reaction pathways of single spiropyran molecules [J]. Journal of the American Chemical Society, 2017, 139(28): 9447-9450.
[25] [25] Ge L, Zhang M, Kenny S J, et al. Remodeling of ER-exit sites initiates a membrane supply pathway for autophagosome biogenesis [J]. EMBO Reports, 2017, 18(9): 1586-1603.
[26] [26] Karanasios E, Walker S A, Okkenhaug H, et al. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles [J]. Nature Communications, 2016, 7: 12420.
[27] [27] Hu Y, Cang H, Lillemeier B F. Superresolution imaging reveals nanometer- and micrometer-scale spatial distributions of T-cell receptors in lymph nodes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): 7201-7206.
[28] [28] Schoneberg J, Lehmann M, Ullrich A, et al. Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission [J]. Nature Communications, 2017, 8: 15873.
[29] [29] Suleiman H Y, Roth R, Jain S, et al. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy [J]. JCI Insight, 2017, 2(16): 94137.
Get Citation
Copy Citation Text
Yang Jianyu, Pan Leiting, Hu Fen, Zhang Xinzheng, Xu Jingjun. Stochastic Optical Reconstruction Microscopy and its application[J]. Infrared and Laser Engineering, 2017, 46(11): 1103008
Category: 特约专栏-野超分辨成像技术
Received: Oct. 10, 2017
Accepted: Nov. 20, 2017
Published Online: Dec. 26, 2017
The Author Email: Jianyu Yang (yangjy@mail.nankai.edu.cn)