Opto-Electronic Engineering, Volume. 52, Issue 6, 250082(2025)

Multi-frequency Transformer-guided graph-based feature aggregation for retinal image quality grading

Liming Liang, Yi Zhong*, Chengbin Wang, and Ting Kang
Author Affiliations
  • School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • show less
    Figures & Tables(17)
    Overall framework of MFTGA
    Frequency-channel recalibration Transformer module
    Adaptive channel self-attention module
    Graph cross-feature aggregation module
    Various steps of CLAHE and Gamma correction for retinal fundus images
    Ablation experiment confusion matrix
    Feature heatmap of ablation experiments on Eye-Quality dataset
    Display of the functions of the FCRT module spectrum diagrams
    Network feature heatmaps of each stage on the Eye-Quality and RIQA-RFMiD datasets
    • Table 1. The number of class distribution of Eye-Quality datasets

      View table
      View in Article

      Table 1. The number of class distribution of Eye-Quality datasets

      Eye-Quality优质可用拒绝总体
      训练集83471876232012543
      测试集84704559322016249
      总体168176435554028792
    • Table 2. The number of class distribution of RIQA-RFMiD datasets

      View table
      View in Article

      Table 2. The number of class distribution of RIQA-RFMiD datasets

      RIQA-RFMiD优质可用拒绝总体
      训练集174599761920
      测试集4949551640
      总体22391941272560
    • Table 3. Performance indicators of channel coefficient models at different frequencies on the Eye-Quality dataset

      View table
      View in Article

      Table 3. Performance indicators of channel coefficient models at different frequencies on the Eye-Quality dataset

      αAccuracy/%Precision/%Recall/%F1-Score/%
      0.185.8184.8182.6883.31
      0.286.1184.4784.8784.54
      0.386.8386.2284.9084.82
      0.487.5286.8886.1185.77
      0.587.6487.2486.6586.70
      0.688.7187.7886.8686.89
      0.788.1186.9886.7486.44
      0.887.9886.5286.1586.37
      0.987.7286.2386.4886.10
    • Table 4. Performance indicators of models with different weighting factors on the Eye-Quality dataset

      View table
      View in Article

      Table 4. Performance indicators of models with different weighting factors on the Eye-Quality dataset

      ωAccuracy/%Precision/%Recall/%F1-Score/%
      087.9486.8785.2085.94
      0.187.2586.0285.2285.36
      0.287.3385.7285.9785.17
      0.387.2586.0385.4685.12
      0.487.6787.6385.6585.63
      0.588.2687.7985.5886.44
      0.688.6188.2285.6386.28
      0.788.5288.2485.6086.42
      0.888.7187.7886.8686.89
      0.988.4588.3685.0886.48
      1.087.7087.4186.1486.22
    • Table 5. Results of different algorithms on the Eye-Quality dataset

      View table
      View in Article

      Table 5. Results of different algorithms on the Eye-Quality dataset

      MethodsAccuracy/%Precision/%Recall/%F1-Score/%
      ResNeSt[22]87.3585.6384.8285.06
      NBIQA[23]79.1776.4175.0974.41
      FASNB[24]88.5987.5686.1086.74
      FBSM[25]87.2386.4084.5485.13
      DenseNet121-RGB [10]85.6884.8182.3983.15
      DenseNet121-MCF [10]87.2285.6384.8285.06
      Single-QA[13]88.4787.1586.4586.62
      MFTGA88.7187.7886.8686.89
    • Table 6. Results of different algorithms on the Eye-Quality dataset

      View table
      View in Article

      Table 6. Results of different algorithms on the Eye-Quality dataset

      MethodsAccuracy/%Precision/%Recall/%F1-Score/%
      FBSM[25]83.7577.8456.4961.84
      DenseNet121-RGB [10]83.1371.8757.4160.42
      DenseNet121-MCF [10]82.8175.1361.3165.53
      FASNB[24]84.2273.9562.9467.17
      MFTGA84.9574.2268.2567.58
    • Table 7. Ablation results on the Eye-Quality dataset

      View table
      View in Article

      Table 7. Ablation results on the Eye-Quality dataset

      MethodsAccuracy/%Precision/%Recall/%F1-Score/%
      W188.2187.3485.6986.39
      W287.0185.8184.2684.68
      W387.5986.1785.1485.49
      W488.1888.1184.7186.17
      W587.9486.8785.2085.94
      W688.7187.7886.8686.89
    • Table 8. Correlation research experiment of MFTGA on the Eye-Quality dataset

      View table
      View in Article

      Table 8. Correlation research experiment of MFTGA on the Eye-Quality dataset

      MethodsAccuracy/%Precision/%Recall/%F1-Score/%
      M185.4484.1384.2783.78
      M286.5885.4885.0384.69
      M387.9786.9886.4585.66
      M488.0487.5086.7086.25
      M588.7187.7886.8686.89
    Tools

    Get Citation

    Copy Citation Text

    Liming Liang, Yi Zhong, Chengbin Wang, Ting Kang. Multi-frequency Transformer-guided graph-based feature aggregation for retinal image quality grading[J]. Opto-Electronic Engineering, 2025, 52(6): 250082

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Mar. 15, 2025

    Accepted: May. 8, 2025

    Published Online: Sep. 3, 2025

    The Author Email: Yi Zhong (钟奕)

    DOI:10.12086/oee.2025.250082

    Topics