Laser & Optoelectronics Progress, Volume. 57, Issue 14, 141027(2020)

Method for Removal of Rain and Fog in Single Image

Bingyuan Wang1,2, Fang Zheng2、*, Jian Jiang2, and Bo Yang2
Author Affiliations
  • 1Ground Support Equipment Research Base of Civil Aviation University of China, Tianjin 300300, China
  • 2School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
  • show less
    Figures & Tables(10)
    Mapping of manifold learning
    Mapping and embedding of LLE algorithm
    Dehazing map and its color histogram. (a) Foggy image; (b) manifold particle filtering for fog removal; (c) color histogram of Fig. 3(a); (d) color histogram of Fig. 3(b)
    Architecture of proposed method in this paper
    Original images and test results of each algorithm for synthetic uniform fog and fog in natural scene. (a) Input hazy images; (b) soft matting; (c) GF algorithm; (d) method proposed by He et al.; (e) Retinex algorithm; (f) HF; (g) NBPC+PA; (h) proposed method
    Original images and test results of each algorithm for rain and fog removal. (a) Rain image; (b) Gaussian curvature algorithm; (c) DRN; (d) proposed method
    • Table 1. Structural parameter settings of recursive network

      View table

      Table 1. Structural parameter settings of recursive network

      LayerFeature
      0Detail layer
      1Conv(1×1, 32); stride:1; ReLU
      2Conv(1×1, 32); stride:1; ReLU
      3Conv(1×1, 32); stride: 1; ReLU
      Residual4Concatenate (2,3)
      5Conv(1×1, 32); stride:1; ReLU
      6Conv (1×1, 32); stride:1; ReLU
      7Concatenate (4,5)
      Input gateConv (3×3, 32); stride:1; sigmoid
      LSTMForget gateConv (3×3, 32); stride:1; sigmoid
      Cell stateConv (3×3, 32); stride:1; sigmoid
      Output gateConv (3×3, 32); stride:1; sigmoid
    • Table 2. Discriminator structural parameter setting

      View table

      Table 2. Discriminator structural parameter setting

      LayerFeature
      Layer 0Output image
      Layer 1Conv (5×5, 8); stride:1; ReLU
      Layer 2Conv (5×5, 16); stride:1; ReLU
      Layer 3Conv (5×5, 32); stride:1; ReLU
      Layer 4Conv (5×5, 64); stride:1; ReLU
      Layer 5Conv (5×5, 128); stride:1; ReLU
      Layer 6Conv (5×5, 128); stride:1; ReLU
      Layer 7Conv (5×5, 64); stride:4; ReLU
      Layer 8Conv (5×5, 64); stride:4; ReLU
      Layer 9Conv (5×5, 32); stride:4; ReLU
    • Table 3. Data obtained by objective evaluation methods for testing images in Fig. 5

      View table

      Table 3. Data obtained by objective evaluation methods for testing images in Fig. 5

      SettingNo.SoftmattingGF algorithmMethodproposedby He et al.RetinexalgorithmHFNBPC+PAMPF (manifoldparticlefiltering)
      MSD /1050.8320.8941.3100.9950.8571.2122.011
      1PSNR62.45461.27260.83260.58262.65861.53662.720
      SSIM0.4180.4030.4160.2510.6900.5340.746
      MSD /1050.9540.9801.5381.0580.9760.7791.310
      2PSNR59.08160.71859.93058.37358.54560.68161.346
      SSIM0.4500.4840.3890.3730.4730.5150.815
      MSD /1052.5903.4164.2353.2202.3191.9605.099
      3PSNR63.07458.25861.47454.30760.50563.59165.186
      SSIM0.8128.5160.5390.3250.7560.8180.871
      MSD /1052.1222.7473.4621.6562.7031.8864.990
      4PSNR61.74756.11460.24955.53261.31963.49861.275
      SSIM0.5890.4740.4830.3510.5950.6840.743
      MSD /1052.4943.2833.7003.0761.9731.7834.495
      5PSNR57.72156.29257.98754.65461.39660.75660.127
      SSIM0.5300.4600.5380.3330.6990.8090.828
      MSD /1053.6345.3885.7454.6884.0523.4787.636
      6PSNR65.72957.37258.64454.45660.79465.20767.130
      SSIM0.7260.5880.6160.3340.7010.8200.905
    • Table 4. Data obtained by objective evaluation methods for natural rain and fog scene for experiments (Fig. 6)

      View table

      Table 4. Data obtained by objective evaluation methods for natural rain and fog scene for experiments (Fig. 6)

      Scene No.FSIMSSIMPSNR
      GCDRNIA-GANGCDRNIA-GANGCDRNIA-GAN
      10.7410.7780.9670.7400.9060.93764.03837.48271.495
      20.8120.7940.8420.9030.8960.95667.36870.04870.544
      30.7030.8330.8950.9000.9120.94766.61170.68174.159
      40.8040.8640.8470.9070.8870.94670.81169.24369.879
      50.7180.8730.8930.3540.9150.93968.33771.08672.815
      注:GC: Gaussian curvature; IA-GAN: improved attentive generative adversarial network
    Tools

    Get Citation

    Copy Citation Text

    Bingyuan Wang, Fang Zheng, Jian Jiang, Bo Yang. Method for Removal of Rain and Fog in Single Image[J]. Laser & Optoelectronics Progress, 2020, 57(14): 141027

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Oct. 21, 2019

    Accepted: Dec. 31, 2019

    Published Online: Jul. 28, 2020

    The Author Email: Fang Zheng (1067229919@qq.com)

    DOI:10.3788/LOP57.141027

    Topics