Laser & Optoelectronics Progress, Volume. 59, Issue 12, 1215002(2022)

Improved Tiny YOLOv4 Algorithm and Its Application in Pedestrian Detection

Yong Xuan1, Chao Han1、*, and Wenhan Sha2
Author Affiliations
  • 1Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, Anhui Polytechnic University, Wuhu 241000, Anhui , China
  • 2Chery New Energy Automobile Co., Ltd., Wuhu 241000, Anhui , China
  • show less
    Figures & Tables(13)
    Network structure of Tiny YOLOv4
    Improved network structure
    Network structures of traditional convolution and depthwise separable convolution. (a) Network structure of traditional convolution; (b) network structure of depthwise separable convolution
    Channel attention structure
    Structure diagram of spatial attention module
    Feature enhancement module
    Loss values of different network structures. (a) Loss values of YOLOv4; (b) loss values of Tiny YOLOv4; (c) loss values of improved network
    Experimental results
    • Table 1. Comparison of training parameters of different network models

      View table

      Table 1. Comparison of training parameters of different network models

      Detection algorithmNumber of training parameters
      YOLOv464040001
      Tiny YOLOv45939804
      Proposed Tiny YOLOv44369606
    • Table 2. Size comparison of different network models

      View table

      Table 2. Size comparison of different network models

      Detection algorithmModel size /MB
      YOLOv4246
      Tiny YOLOv422.7
      Proposed Tiny YOLOv415.9
    • Table 3. Test results of different algorithms on different datasets

      View table

      Table 3. Test results of different algorithms on different datasets

      DatasetAlgorithmAP /%FPS /(frame·s-1
      INRIAYOLOv486.220.1
      Tiny YOLOv468.6731.6
      Proposed Tiny YOLOv476.3230.4
      COCOYOLOv490.7620.8
      Tiny YOLOv469.7632.4
      Proposed Tiny YOLOv478.230.2
      VOCYOLOv490.419.8
      Tiny YOLOv471.2731.2
      Proposed Tiny YOLOv478.830.6
      Mixed dataYOLOv492.519.5
      Tiny YOLOv473.4232.2
      Proposed Tiny YOLOv480.5231.4
    • Table 4. Comparison of results of detection algorithm

      View table

      Table 4. Comparison of results of detection algorithm

      AlgorithmAP /%Recall /%FPS /(frame·s-1
      Faster R-CNN72.3778.44.7
      SSD78.2079.122.1
      YOLOv385.3477.617.3
      Tiny YOLOv367.8073.425.6
      YOLOv492.5081.519.5
      Tiny YOLOv473.4275.732.2
      Proposed Tiny YOLOv480.5282.331.4
    • Table 5. Ablation experiments on mixed datasets

      View table

      Table 5. Ablation experiments on mixed datasets

      Tiny YOLOv4 baselineDSCAttention mechanismScale enhancementAP /%
      73.42
      74.32
      77.27
      80.52
    Tools

    Get Citation

    Copy Citation Text

    Yong Xuan, Chao Han, Wenhan Sha. Improved Tiny YOLOv4 Algorithm and Its Application in Pedestrian Detection[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1215002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 14, 2021

    Accepted: Jun. 2, 2021

    Published Online: May. 23, 2022

    The Author Email: Chao Han (hanchaozh@126.com)

    DOI:10.3788/LOP202259.1215002

    Topics