Journal of Innovative Optical Health Sciences, Volume. 18, Issue 1, 2430005(2025)

Recent advances in near-infrared photobiomodulation for the intervention of acquired brain injury

Yujing Huang1,2, Yujing Zhang1,2, Chen Yang1,2, Mengze Xu2,3, and Zhen Yuan1,2、*
Author Affiliations
  • 1Ministry of Education, Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, P. R. China
  • 2Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau SAR 999078, P. R. China
  • 3Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, P. R. China
  • show less
    References(129)

    [1] J. Bruns, W. A. Hauser. The epidemiology of traumatic brain injury: A review. Epilepsia, 44, 2-10(2003).

    [2] L. Goldman, E. M. Siddiqui, A. Khan, S. Jahan, M. U. Rehman, S. Mehan, R. Sharma, S. Budkin, S. N. Kumar, A. Sahu, M. Kumar, K. Vaibhav. Understanding acquired brain injury: A review. Biomedicines, 10, 2167(2022).

    [3] J. Ghajar. Traumatic brain injury. Lancet, 356, 923-929(2000).

    [4] S. Fleminger, J. Ponsford. Long term outcome after traumatic brain injury. BMJ, 331, 1419-1420(2005).

    [5] D. N. Cope, K. Hall. Head injury rehabilitation: Benefit of early intervention. Arch. Phys. Med. Rehabil., 63, 433-437(1982).

    [6] J.-Y. Jiang, G.-Y. Gao, J.-F. Feng, Q. Mao, L.-G. Chen, X.-F. Yang, J.-F. Liu, Y.-H. Wang, B.-H. Qiu, X.-J. Huang. Traumatic brain injury in China. Lancet Neurol., 18, 286-295(2019).

    [7] V. Saini, L. Guada, D. R. Yavagal. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology, 97, S6-S16(2021).

    [8] T. G. da Silva, R. S. Ribeiro, A. L. Mencalha, A. de Souza Fonseca. Photobiomodulation at molecular, cellular, and systemic levels. Lasers Med. Sci., 38, 136(2023).

    [9] S. Shamloo, E. Defensor, P. Ciari, G. Ogawa, L. Vidano, J. S. Lin, J. A. Fortkort, M. Shamloo, A. E. Barron. The anti-inflammatory effects of photobiomodulation are mediated by cytokines: Evidence from a mouse model of inflammation. Front. Neurosci., 17, 1150156(2023).

    [10] S. W. Jere, H. Abrahamse, N. N. Houreld. Interaction of the AKT and β-catenin signalling pathways and the influence of photobiomodulation on cellular signalling proteins in diabetic wound healing. J. Biomed. Sci., 30, 81(2023).

    [11] S. Song, F. Zhou, W. R. Chen. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases. J. Neuroinflammation, 9, 219(2012).

    [12] F. Fernandes, S. Oliveira, F. Monteiro, M. Gasik, F. S. Silva, N. Sousa, Ó. Carvalho, S. O. Catarino. Devices used for photobiomodulation of the brain — a comprehensive and systematic review. J. NeuroEngineering Rehabil., 21, 53(2024).

    [13] W. Pan, P. Liu, D. Ma, J. Yang. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. J. Transl. Med., 21, 135(2023).

    [14] A. S. Chan, T. L. Lee, M. K. Yeung, M. R. Hamblin. Photobiomodulation improves the frontal cognitive function of older adults. Int. J. Geriatr. Psychiatry, 34, 369-377(2019).

    [15] M. A. Naeser, A. Saltmarche, M. H. Krengel, M. R. Hamblin, J. A. Knight. Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: Two case reports. Photomed. Laser Surg., 29, 351-358(2011).

    [16] M. A. Naeser, R. Zafonte, M. H. Krengel, P. I. Martin, J. Frazier, M. R. Hamblin, J. A. Knight, W. P. Meehan, E. H. Baker. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: Open-protocol study. J. Neurotrauma, 31, 1008-1017(2014).

    [17] B. J. Quirk, M. Torbey, E. Buchmann, S. Verma, H. T. Whelan. Near-infrared photobiomodulation in an animal model of traumatic brain injury: Improvements at the behavioral and biochemical levels. Photomed. Laser Surg., 30, 523-529(2012).

    [18] D. Nizamutdinov, C. Ezeudu, E. Wu, J. H. Huang, S. S. Yi. Transcranial near-infrared light in treatment of neurodegenerative diseases. Front. Pharmacol., 13, 965788(2022).

    [19] M. R. Hamblin. Photobiomodulation for traumatic brain injury and stroke. J. Neurosci. Res., 96, 731-743(2018).

    [20] L. D. Morries, P. Cassano, T. A. Henderson. Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatr. Dis. Treat., 11, 2159-2175(2015).

    [21] F. Salehpour, J. Mahmoudi, F. Kamari, S. Sadigh-Eteghad, S. H. Rasta, M. R. Hamblin. Brain photobiomodulation therapy: A narrative review. Mol. Neurobiol., 55, 6601-6636(2018).

    [22] S.-Y. Chang, M. Y. Lee. Photobiomodulation of neurogenesis through the enhancement of stem cell and neural progenitor differentiation in the central and peripheral nervous systems. Int. J. Mol. Sci., 24, 15427(2023).

    [23] R. Zomorrodi, G. Loheswaran, A. Pushparaj, L. Lim. Pulsed near infrared transcranial and intranasal photobiomodulation significantly modulates neural oscillations: A pilot exploratory study. Sci. Rep., 9, 1-11(2019).

    [24] R. O. Esenaliev, I. Y. Petrov, Y. Petrov, J. Guptarak, D. R. Boone, E. Mocciaro, H. Weisz, M. A. Parsley, S. L. Sell, H. Hellmich, J. M. Ford, C. Pogue, D. DeWitt, D. S. Prough, M.-A. Micci. Nano-pulsed laser therapy is neuroprotective in a rat model of blast-induced neurotrauma. J. Neurotrauma, 35, 1510-1522(2018).

    [25] Y. Feng, L. Yang, X. Ma, Z. Huang, X. Zong, C. T. Citadin, H. W. Lin, Q. Zhang. Photobiomodulation treatment inhibits neurotoxic astrocytic polarization and protects neurons in in vitro and in vivo stroke models. Neurochem. Int., 162, 105464(2023).

    [26] P. A. Lapchak, L. De Taboada. Transcranial near infrared laser treatment (NILT) increases cortical adenosine-5’-triphosphate (ATP) content following embolic strokes in rabbits. Brain Res., 1306, 100-105(2010).

    [27] L. F. de Freitas, M. R. Hamblin. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron., 22, 7000417(2016).

    [28] M. R. Hamblin. Shining light on the head: Photobiomodulation for brain disorders. BBA Clinical, 6, 113-124(2016).

    [29] M. Wang, C. Yan, X. Li, T. Yang, S. Wu, Q. Liu, Q. Luo, F. Zhou. Non-invasive modulation of meningeal lymphatics ameliorates ageing and Alzheimer’s disease-associated pathology and cognition in mice. Nat. Commun., 15, 1453(2024).

    [30] H. L. Liang, H. T. Whelan, J. T. Eells, H. Meng, E. Buchmann, A. Lerch-Gaggl, M. Wong-Riley. Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis. Neuroscience, 139, 639-649(2006).

    [31] M. T. T. Wong-Riley, H. L. Liang, J. T. Eells, B. Chance, M. M. Henry, E. Buchmann, M. Kane, H. T. Whelan. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: ROLE OF CYTOCHROME c OXIDASE *. J. Biol. Chem., 280, 4761-4771(2005).

    [32] T. I. Karu, L. V. Pyatibrat, G. S. Kalendo. Photobiological modulation of cell attachment via cytochrome c oxidase. Photochem. Photobiol. Sci., 3, 211-216(2004).

    [33] R. Ying, H. L. Liang, H. T. Whelan, J. T. Eells, M. T. T. Wong-Riley. Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP+-induced neurotoxicity. Brain Res., 1243, 167-173(2008).

    [34] R. Natoli, Y. Zhu, K. Valter, S. Bisti, J. Eells, J. Stone. Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina. Mol. Vis., 16, 1801-1822(2010).

    [35] T. Pruitt, E. M. Davenport, A. L. Proskovec, J. A. Maldjian, H. Liu. Simultaneous MEG and EEG source imaging of electrophysiological activity in response to acute transcranial photobiomodulation. Front. Neurosci., 18, 1368172(2024).

    [36] R. Zomorrodi, G. Loheswaran, A. Pushparaj, L. Lim. Modulation of neural oscillation power spectral density with transcranial photobiomodulation. Brain Stimul., 12, 457-458(2019).

    [37] X. Wang, J. P. Dmochowski, L. Zeng, E. Kallioniemi, M. Husain, F. Gonzalez-Lima, H. Liu. Transcranial photobiomodulation with 1064-nm laser modulates brain electroencephalogram rhythms. Neurophotonics, 6, 025013(2019).

    [38] E. Vargas, D. W. Barrett, C. L. Saucedo, L.-D. Huang, J. A. Abraham, H. Tanaka, A. P. Haley, F. Gonzalez-Lima. Beneficial neurocognitive effects of transcranial laser in older adults. Lasers Med. Sci., 32, 1153-1162(2017).

    [39] B. S. Subbarao, J. Stokke, S. J. Martin. Telerehabilitation in acquired brain injury. Phys. Med. Rehabil. Clin. N Am., 32, 223-238(2021).

    [40] H. Thielen, N. Tuts, L. Welkenhuyzen, I. M. C. Huenges Wajer, C. Lafosse, C. R. Gillebert. Sensory sensitivity after acquired brain injury: A systematic review. J. Neuropsychol., 17, 1-31(2023).

    [41] A. Capizzi, J. Woo, M. Verduzco-Gutierrez. Traumatic brain injury: An overview of epidemiology, pathophysiology, and medical management. Med. Clin., 104, 213-238(2020).

    [42] N. Stocchetti, M. Carbonara, G. Citerio, A. Ercole, M. B. Skrifvars, P. Smielewski, T. Zoerle, D. K. Menon. Severe traumatic brain injury: Targeted management in the intensive care unit. Lancet Neurol., 16, 452-464(2017).

    [43] A. Khellaf, D. Z. Khan, A. Helmy. Recent advances in traumatic brain injury. J. Neurol., 266, 2878-2889(2019).

    [44] S. K. Feske. Ischemic stroke. Am. J. Med., 134, 1457-1464(2021).

    [45] J. H. DeLong, S. N. Ohashi, K. C. O’Connor, L. H. Sansing. Inflammatory responses after ischemic stroke. Semin. Immunopathol., 44, 625-648(2022).

    [46] F. Herpich, F. Rincon. Management of acute ischemic stroke. Crit. Care Med., 48, 1654-1663(2020).

    [47] A. Ajoolabady, S. Wang, G. Kroemer, J. M. Penninger, V. N. Uversky, D. Pratico, N. Henninger, R. J. Reiter, A. Bruno, K. Joshipura, H. Aslkhodapasandhokmabad, D. J. Klionsky, J. Ren. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol. Ther., 225, 107848(2021).

    [48] M. F. das Neves, A. P. Pinto, L. T. Maegima, F. P. S. Lima, R. Á. B. Lopes-Martins, E. A. Lo Schiavo Arisawa, M. O. Lima. Effects of photobiomodulation on pain, lactate and muscle performance (ROM, torque, and EMG parameters) of paretic upper limb in patients with post-stroke spastic hemiparesis-a randomized controlled clinical trial. Lasers Med. Sci., 39, 88(2024).

    [49] T. M. Yoshida, A. Wang, D. A. Hafler. Basic principles of neuroimmunology. Semin. Immunopathol., 44, 685-695(2022).

    [50] T. N. Seyfried, P. Mukherjee. Targeting energy metabolism in brain cancer: Review and hypothesis. Nutr. Metab. (Lond.), 2, 30(2005).

    [51] S. Wilkes, E. McCormack, K. Kenney, B. Stephens, R. Passo, L. Harburg, E. Silverman, C. Moore, T. Bogoslovsky, D. Pham, R. Diaz-Arrastia. Evolution of traumatic parenchymal intracranial hematomas (ICHs): Comparison of hematoma and edema components. Front. Neurol., 9, 527(2018).

    [52] G. Morrison, D. D. Fraser, G. Cepinskas. Mechanisms and consequences of acquired brain injury during development. Pathophysiology, 20, 49-57(2013).

    [53] N. L. Gaggi, N. L. Roy, X. Song, A. L. Peterson, D. V. Iosifescu, R. Diaz-Arrastia, P. Cassano, J. J. Kim. Transcranial photobiomodulation and chronic traumatic brain injury. Photonics, 11, 260(2024).

    [54] F. Gonzalez-Lima, B. R. Barksdale, J. C. Rojas. Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem. Pharmacol., 88, 584-593(2014).

    [55] S. Passarella, T. Karu. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J. Photochem. Photobiol. B, 140, 344-358(2014).

    [56] L. Yang, H. Youngblood, C. Wu, Q. Zhang. Mitochondria as a target for neuroprotection: Role of methylene blue and photobiomodulation. Transl. Neurodegener., 9, 19(2020).

    [57] J. C. de la Torre, A. D. Olmo, S. Valles. Can mild cognitive impairment be stabilized by showering brain mitochondria with laser photons?. Neuropharmacology, 171, 107841(2020).

    [58] L. Zupin, F. Celsi, G. Ottaviani, S. Crovella. Photobiomodulation therapy at different wavelength impacts on retinoid acid–dependent SH-SY5Y differentiation. Lasers Med. Sci., 35, 221-226(2020).

    [59] T. Dong, Q. Zhang, M. R. Hamblin, M. X. Wu. Low-level light in combination with metabolic modulators for effective therapy of injured brain. J. Cereb. Blood Flow Metab., 35, 1435-1444(2015).

    [60] F. Salehpour, N. Ahmadian, S. H. Rasta, M. Farhoudi, P. Karimi, S. Sadigh-Eteghad. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol. Aging, 58, 140-150(2017).

    [61] M. Vos, B. Lovisa, A. Geens, V. A. Morais, G. Wagnières, H. van den Bergh, A. Ginggen, B. De Strooper, Y. Tardy, P. Verstreken. Near-infrared 808nm light boosts complex IV-dependent respiration and rescues a Parkinson-related pink1 model. PLoS One, 8, e78562(2013).

    [62] L. D. Tucker, Y. Lu, Y. Dong, L. Yang, Y. Li, N. Zhao, Q. Zhang. Photobiomodulation therapy attenuates hypoxic-ischemic injury in a neonatal rat model. J. Mol. Neurosci., 65, 514-526(2018).

    [63] F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, J. Mahmoudi. Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res. Bull., 144, 213-222(2019).

    [64] L. Yang, D. Tucker, Y. Dong, C. Wu, Y. Lu, Y. Li, J. Zhang, T. C.-Y. Liu, Q. Zhang. Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells. Exp. Neurol., 299, 86-96(2018).

    [65] R. E. von Leden, S. J. Cooney, T. M. Ferrara, Y. Zhao, C. L. Dalgard, J. J. Anders, K. R. Byrnes. 808nm wavelength light induces a dose-dependent alteration in microglial polarization and resultant microglial induced neurite growth. Lasers Surg. Med., 45, 253-263(2013).

    [66] J. Khuman, J. Zhang, J. Park, J. D. Carroll, C. Donahue, M. J. Whalen. Low-Level Laser Light Therapy Improves Cognitive Deficits and Inhibits Microglial Activation after Controlled Cortical Impact in Mice. J. Neurotrauma, 29, 408-417(2012).

    [67] Y.-Y. Huang, K. Nagata, C. E. Tedford, T. McCarthy, M. R. Hamblin. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J. Biophotonics, 6, 829-838(2013).

    [68] Z. Yu, Z. Li, N. Liu, Y. Jizhang, T. J. McCarthy, C. E. Tedford, E. H. Lo, X. Wang. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro. Metab. Brain Dis., 30, 829-837(2015).

    [69] I. Mocchetti, J. R. Wrathall. Neurotrophic factors in central nervous system trauma. J. Neurotrauma, 12, 853-870(1995).

    [70] S. J. Allen, J. J. Watson, D. K. Shoemark, N. U. Barua, N. K. Patel. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol. Ther., 138, 155-175(2013).

    [71] D. L. Emery, N. C. Royo, I. Fischer, K. E. Saatman, T. K. McIntosh. Plasticity following injury to the adult central nervous system: Is recapitulation of a developmental state worth promoting?. J. Neurotrauma, 20, 1271-1292(2003).

    [72] L. F. Lin, D. H. Doherty, J. D. Lile, S. Bektesh, F. Collins. GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 260, 1130-1132(1993).

    [73] K. R. Byrnes, X. Wu, R. W. Waynant, I. K. Ilev, J. J. Anders. Low power laser irradiation alters gene expression of olfactory ensheathing cells in vitro. Lasers Surg. Med., 37, 161-171(2005).

    [74] W. Xuan, T. Agrawal, L. Huang, G. K. Gupta, M. R. Hamblin. Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J. Biophotonics, 8, 502-511(2015).

    [75] W. Xuan, L. Huang, M. R. Hamblin. Repeated transcranial low-level laser therapy for traumatic brain injury in mice: Biphasic dose response and long-term treatment outcome. J. Biophotonics, 9, 1263-1272(2016).

    [76] W. Xuan, F. Vatansever, L. Huang, Q. Wu, Y. Xuan, T. Dai, T. Ando, T. Xu, Y.-Y. Huang, M. R. Hamblin. Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: Effect of treatment repetition regimen. PLoS One, 8, e53454(2013).

    [77] W. Xuan, F. Vatansever, L. Huang, M. R. Hamblin. Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. J. Biomed. Opt., 19, 108003(2014).

    [78] J. J. Anders, H. Moges, X. Wu, I. D. Erbele, S. L. Alberico, E. K. Saidu, J. T. Smith, B. A. Pryor. In vitro and in vivo optimization of infrared laser treatment for injured peripheral nerves. Lasers Surg. Med., 46, 34-45(2014).

    [79] Y. Uozumi, H. Nawashiro, S. Sato, S. Kawauchi, K. Shima, M. Kikuchi. Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation. Lasers Surg. Med., 42, 566-576(2010).

    [80] H. Engquist, A. Lewén, L. Hillered, E. Ronne-Engström, P. Nilsson, P. Enblad, E. Rostami. CBF changes and cerebral energy metabolism during hypervolemia, hemodilution, and hypertension therapy in patients with poor-grade subarachnoid hemorrhage. J. Neurosurg., 134, 555-564(2021).

    [81] Y. V. Stepanov, I. Golovynska, S. Golovynskyi, L. V. Garmanchuk, O. Gorbach, L. I. Stepanova, N. Khranovska, L. I. Ostapchenko, T. Y. Ohulchanskyy, J. Qu. Red and near infrared light-stimulated angiogenesis mediated via Ca2+ influx, VEGF production and NO synthesis in endothelial cells in macrophage or malignant environments. J. Photochem. Photobiol. B, 227, 112388(2022).

    [82] J. F. Dunn, Q. Zhang, Y. Wu, S. Srinivasan, M. R. Smith, R. A. Shaw. Monitoring angiogenesis noninvasively with near-infrared spectroscopy. J. Biomed. Opt., 13, 064043(2008).

    [83] C. Rau, J. C. Yang, S. Jeng, Y. Chen, C. Lin, C. Wu, T. Lu, C. Hsieh. Far-infrared radiation promotes angiogenesis in human microvascular endothelial cells via extracellular signal-regulated kinase activation. Photochem. Photobiol., 87, 441-446(2011).

    [84] A. Oron, U. Oron, J. Streeter, L. De Taboada, A. Alexandrovich, V. Trembovler, E. Shohami. Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J. Neurotrauma, 24, 651-656(2007).

    [85] A. Oron, U. Oron, J. Streeter, L. De Taboada, A. Alexandrovich, V. Trembovler, E. Shohami. Near infrared transcranial laser therapy applied at various modes to mice following traumatic brain injury significantly reduces long-term neurological deficits. J. Neurotrauma, 29, 401-407(2012).

    [86] T. Ando, W. Xuan, T. Xu, T. Dai, S. K. Sharma, G. B. Kharkwal, Y.-Y. Huang, Q. Wu, M. J. Whalen, S. Sato, M. Obara, M. R. Hamblin. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One, 6, e26212(2011).

    [87] Q. Wu, W. Xuan, T. Ando, T. Xu, L. Huang, Y.-Y. Huang, T. Dai, S. Dhital, S. K. Sharma, M. J. Whalen, M. R. Hamblin. Low-level laser therapy for closed-head traumatic brain injury in mice: Effect of different wavelengths. Lasers Surg. Med., 44, 218-226(2012).

    [88] M. S. Moreira, I. T. Velasco, L. S. Ferreira, S. K. K. Ariga, D. F. Barbeiro, D. T. Meneguzzo, F. Abatepaulo, M. M. Marques. Effect of phototherapy with low intensity laser on local and systemic immunomodulation following focal brain damage in rat. J. Photochem. Photobiol. B, 97, 145-151(2009).

    [89] M. S. Moreira, I. T. Velasco, L. S. Ferreira, S. K. K. Ariga, F. Abatepaulo, L. T. Grinberg, M. M. Marques. Effect of laser phototherapy on wound healing following cerebral ischemia by cryogenic injury. J. Photochem. Photobiol. B, 105, 207-215(2011).

    [90] Q. Zhang, C. Zhou, M. R. Hamblin, M. X. Wu. Low-level laser therapy effectively prevents secondary brain injury induced by immediate early responsive gene X-1 deficiency. J. Cereb. Blood Flow Metab., 34, 1391-1401(2014).

    [91] E. Mocciaro, A. Grant, R. O. Esenaliev, I. Y. Petrov, Y. Petrov, S. L. Sell, N. L. Hausser, J. Guptarak, E. Bishop, M. A. Parsley, I. J. Bolding, K. M. Johnson, M. Lidstone, D. S. Prough, M.-A. Micci. Non-invasive transcranial nano-pulsed laser therapy ameliorates cognitive function and prevents aberrant migration of neural progenitor cells in the hippocampus of rats subjected to traumatic brain injury. J. Neurotrauma, 37, 1108-1123(2020).

    [92] S. G. Hipskind, F. L. Grover, T. R. Fort, D. Helffenstein, T. J. Burke, S. A. Quint, G. Bussiere, M. Stone, T. Hurtado. Pulsed transcranial red/near-infrared light therapy using light-emitting diodes improves cerebral blood flow and cognitive function in veterans with chronic traumatic brain injury: A case series. Photobiomodul. Photomed. Laser Surg., 37, 77-84(2019).

    [94] M. G. F. Longo, C. O. Tan, S. Chan, J. Welt, A. Avesta, E. Ratai, N. D. Mercaldo, A. Yendiki, J. Namati, I. Chico-Calero, B. A. Parry, L. Drake, R. Anderson, T. Rauch, R. Diaz-Arrastia, M. Lev, J. Lee, M. Hamblin, B. Vakoc, R. Gupta. Effect of Transcranial Low-Level Light Therapy vs Sham Therapy Among Patients With Moderate Traumatic Brain Injury: A Randomized Clinical Trial. JAMA Netw. Open, 3, e2017337(2020).

    [95] E. S. Rindner, J. M. Haroon, K. G. Jordan, K. D. Mahdavi, J. R. Surya, M. A. Zielinski, B. Habelhah, V. Venkatraman, S. A. Becerra, L. Chan, T. P. Kuhn, S. E. Jordan. Transcranial infrared laser stimulation for the treatment of traumatic brain injury: A case series. J. Lasers Med. Sci., 13, e65(2022).

    [96] P. A. Lapchak, J. Wei, J. A. Zivin. Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke, 35, 1985-1988(2004).

    [97] P. A. Lapchak, K. F. Salgado, C. H. Chao, J. A. Zivin. DeTaboada. Neuroscience, 148, 907-914(2007).

    [98] L. Detaboada, S. Ilic, S. Leichliter-Martha, U. Oron, A. Oron, J. Streeter. Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Lasers Surg. Med., 38, 70-73(2006).

    [99] B. N. Huisa, Y. Chen, B. C. Meyer, G. M. Tafreshi, J. A. Zivin. Incremental treatments with laser therapy augments good behavioral outcome in the rabbit small clot embolic stroke model. Lasers Med. Sci., 28, 1085-1089(2013).

    [100] A. Oron, U. Oron, J. Chen, A. Eilam, C. Zhang, M. Sadeh, Y. Lampl, J. Streeter, L. DeTaboada, M. Chopp. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke, 37, 2620-2624(2006).

    [101] R. Wang, Y. Dong, Y. Lu, W. Zhang, D. W. Brann, Q. Zhang. Photobiomodulation for global cerebral ischemia: Targeting mitochondrial dynamics and functions. Mol. Neurobiol., 56, 1852-1869(2019).

    [102] E. G. de Jesus Fonseca, A. Pedroso, D. Neuls, D. Barbosa, F. J. Cidral-Filho, A. S. I. Salgado, A. Dubiela, E. Carraro, I. I. Kerppers. Study of transcranial therapy 904 nm in experimental model of stroke. Lasers Med. Sci., 34, 1619-1625(2019).

    [103] D. D. S. Vogel, N. N. Ortiz-Villatoro, N. S. Araújo, M. J. G. Marques, F. Aimbire, F. A. Scorza, C. A. Scorza, R. Albertini. Transcranial low-level laser therapy in an in vivo model of stroke: Relevance to the brain infarct, microglia activation and neuroinflammation. J. Biophotonics, 14, e202000500(2021).

    [104] Y. Feng, Z. Huang, X. Ma, X. Zong, C. Y.-C. Wu, R. H.-C. Lee, H. W. Lin, M. R. Hamblin, Q. Zhang. Activation of testosterone-androgen receptor mediates cerebrovascular protection by photobiomodulation treatment in photothrombosis-induced stroke rats. CNS Neurosci. Ther., 30, e14574(2024).

    [106] Y. Lampl, J. A. Zivin, M. Fisher, R. Lew, L. Welin, B. Dahlof, P. Borenstein, B. Andersson, J. Perez, C. Caparo, S. Ilic, U. Oron. Infrared laser therapy for ischemic stroke: A new treatment strategy. Stroke, 38, 1843-1849(2007).

    [107] J. A. Zivin, G. W. Albers, N. Bornstein, T. Chippendale, B. Dahlof, T. Devlin, M. Fisher, W. Hacke, W. Holt, S. Ilic, S. Kasner, R. Lew, M. Nash, J. Perez, M. Rymer, P. Schellinger, D. Schneider, S. Schwab, R. Veltkamp, M. Walker, J. Streeter, NeuroThera Effectiveness and Safety Trial-2 Investigators . Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke, 40, 1359-1364(2009).

    [108] W. Hacke, P. D. Schellinger, G. W. Albers, N. M. Bornstein, B. L. Dahlof, R. Fulton, S. E. Kasner, A. Shuaib, S. P. Richieri, S. G. Dilly, J. Zivin, K. R. Lees, J. A. Zivin, J. Broderick, A. Ivanova, K. Johnston, B. Norrving, G. Albars, A. Alexandrov, D. Brown, P. Capone, D. Chiu, W. Clark, J. Cochran, C. Deredyn, T. Devlin, W. Hickling, G. Howell, D. Huang, S. Hussain, S. Mallenbaum, M. Moonis, M. Nash, M. Rymer, R. Taylor, M. Tremwel, B. Buck, J. Perez, C. Gerloff, B. Greiwing, M. Grond, G. Hamman, T. Haarmeiter, S. Jander, M. Köhrmann, M. Ritter, P. Schallinger, D. Schneider, J. Sobesky, T. Steiner, H. Steinmetz, R. Veltkamp, C. Weimar, F. Gruber, B. Andersson, L. Welin, D. Leys, T. Tatlisumak, A. Luft, P. Lyrer, P. Michel, C. Molina, T. Segura. Transcranial laser therapy in acute stroke treatment: Results of neurothera effectiveness and safety trial 3, a phase III clinical end point device trial. Stroke, 45, 3187-3193(2014).

    [109] P. A. Lapchak, P. D. Boitano. Transcranial near-infrared laser therapy for stroke: How to recover from futility in the NEST-3 clinical trial. Acta Neurochir. Suppl., 121, 7-12(2016).

    [110] A. Karabegović, S. Kapidzić-Duraković, F. Ljuca. Laser therapy of painful shoulder and shoulder-hand syndrome in treatment of patients after the stroke. Bosn. J. Basic Med. Sci., 9, 59-65(2009).

    [111] N. A. Boonswang, M. Chicchi, A. Lukachek, D. Curtiss. A new treatment protocol using photobiomodulation and muscle/bone/joint recovery techniques having a dramatic effect on a stroke patient’s recovery: A new weapon for clinicians. BMJ Case Rep., 2012, bcr0820114689(2012).

    [112] M. C. R. dos Reis, E. A. F. de Andrade, A. C. L. Borges, D. Q. de Souza, F. P. S. Lima, R. A. Nicolau, A. O. Andrade, M. O. Lima. Immediate effects of low-intensity laser (808nm) on fatigue and strength of spastic muscle. Lasers Med. Sci., 30, 1089-1096(2015).

    [113] M. F. das Neves, M. C. R. Dos Reis, E. A. F. de Andrade, F. P. S. Lima, R. A. Nicolau, E. Â. L. Arisawa, A. O. Andrade, M. O. Lima. Effects of low-level laser therapy (LLLT 808 nm) on lower limb spastic muscle activity in chronic stroke patients. Lasers Med. Sci., 31, 1293-1300(2016).

    [114] M. F. das Neves, D. C. Aleixo, I. S. Mendes, F. P. S. Lima, R. A. Nicolau, E. A. L. Arisawa, R. A. B. Lopes-Martins, M. O. Lima. Long-term analyses of spastic muscle behavior in chronic poststroke patients after near-infrared low-level laser therapy (808nm): a double-blinded placebo-controlled clinical trial. Lasers Med. Sci., 35, 1459-1467(2020).

    [115] H. L. Casalechi, A. J. L. Dumont, L. A. B. Ferreira, P. R. V. de Paiva, C. dos S. M. Machado, P. de T. C. de Carvalho, C. S. Oliveira, E. C. P. Leal-Junior. Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: a randomized, sham-controlled, triple-blind, crossover, clinical trial. Lasers Med. Sci., 35, 1253-1262(2020).

    [116] A. J. L. Dumont, H. L. Casalechi, S. S. Tomazoni, L. C. Grecco, M. Galli, C. S. Oliveira, E. C. P. Leal-Junior. Photobiomodulation therapy combined with static magnetic field (PBMT–SMF) on spatiotemporal and kinematics gait parameters in post-stroke: A pilot study. Life, 12, 186(2022).

    [117] M. A. Naeser, M. D. Ho, P. I. Martin, M. R. Hamblin, B.-B. Koo. Increased functional connectivity within intrinsic neural networks in chronic stroke following treatment with red/near-infrared transcranial photobiomodulation: Case series with improved naming in aphasia. Photobiomodul. Photomed. Laser Surg., 38, 115-131(2020).

    [118] F. R. Paolillo, G. A. A. Luccas, N. A. Parizotto, A. R. Paolillo, J. C. de Castro Neto, V. S. Bagnato. The effects of transcranial laser photobiomodulation and neuromuscular electrical stimulation in the treatment of post-stroke dysfunctions. J. Biophotonics, 16, e202200260(2023).

    [119] K. Estrada-Rojas, N. P. Cedeño Ortiz. Increased improvement in speech-language skills after transcranial photobiomodulation plus speech-language therapy, compared to speech-language therapy alone: Case report with aphasia. Photobiomodul. Photomed. Laser Surg., 41, 234-240(2023).

    [120] A. Shirokov, I. Blokhina, I. Fedosov, E. Ilyukov, A. Terskov, D. Myagkov, D. Tuktarov, M. Tzoy, V. Adushkina, D. Zlatogosrkaya, A. Evsyukova, V. Telnova, A. Dubrovsky, A. Dmitrenko, M. Manzhaeva, V. Krupnova, M. Tuzhilkin, I. Elezarova, N. Navolokin, E. Saranceva, T. Iskra, E. Lykova, O. Semyachkina-Glushkovskaya. Different effects of phototherapy for rat glioma during sleep and wakefulness. Biomedicines, 12, 262(2024).

    [121] O. Semyachkina-Glushkovskaya, I. Fedosov, A. Zaikin, V. Ageev, E. Ilyukov, D. Myagkov, D. Tuktarov, I. Blokhina, A. Shirokov, A. Terskov, D. Zlatogorskaya, V. Adushkina, A. Evsukova, A. Dubrovsky, M. Tsoy, V. Telnova, M. Manzhaeva, A. Dmitrenko, V. Krupnova, J. Kurths. Technology of the photobiostimulation of the brain’s drainage system during sleep for improvement of learning and memory in male mice. Biomed. Opt. Express, 15, 44-58(2024).

    [122] R. Bowen, P. R. Arany. Use of either transcranial or whole-body photobiomodulation treatments improves COVID-19 brain fog. J. Biophotonics, 16, e202200391(2023).

    [123] Y. Ma, J. Bao, Y. Zhang, Z. Li, X. Zhou, C. Wan, L. Huang, Y. Zhao, G. Han, T. Xue. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell, 177, 243-255.e15(2019).

    [124] C. Bastiancich, A. Da Silva, M.-A. Estève. Photothermal therapy for the treatment of glioblastoma: Potential and preclinical challenges. Front. Oncol., 10, 610356(2020).

    [125] Z. Li, H. Chen, F. Zhou, H. Li, W. R. Chen. Interstitial photoacoustic sensor for the measurement of tissue temperature during interstitial laser phototherapy. Sensors, 15, 5583-5593(2015).

    [126] Y. Chen, L. De Taboada, M. O’Connor, S. Delapp, J. A. Zivin. Thermal effects of transcranial near-infrared laser irradiation on rabbit cortex. Neurosci. Lett., 553, 99-103(2013).

    [127] T. A. Henderson, L. D. Morries. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain?. Neuropsychiatr. Dis. Treat., 11, 2191-2208(2015).

    [128] X. Wang, D. D. Reddy, S. S. Nalawade, S. Pal, F. Gonzalez-Lima, H. Liu. Impact of heat on metabolic and hemodynamic changes in transcranial infrared laser stimulation measured by broadband near-infrared spectroscopy. Neurophotonics, 5, 011004(2017).

    [129] T. A. Henderson, L. D. Morries. Multi-watt near-infrared phototherapy for the treatment of comorbid depression: An open-label single-arm study. Front. Psychiatry, 8, 187(2017).

    Tools

    Get Citation

    Copy Citation Text

    Yujing Huang, Yujing Zhang, Chen Yang, Mengze Xu, Zhen Yuan. Recent advances in near-infrared photobiomodulation for the intervention of acquired brain injury[J]. Journal of Innovative Optical Health Sciences, 2025, 18(1): 2430005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 11, 2024

    Accepted: Jul. 9, 2024

    Published Online: Feb. 21, 2025

    The Author Email: Zhen Yuan (zhenyuan@um.edu.mo)

    DOI:10.1142/S1793545824300052

    Topics