Acta Optica Sinica, Volume. 43, Issue 14, 1400001(2023)
Optical Temperature Field-Driven Tweezers: Principles and Biomedical Applications
[1] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).
[2] Yuan L B, Liu Z H, Yang J et al. Twin-core fiber optical tweezers[J]. Optics Express, 16, 4559-4566(2008).
[3] Min C J, Shen Z, Shen J F et al. Focused plasmonic trapping of metallic particles[J]. Nature Communications, 4, 1-7(2013).
[4] Yu X H, Li R Z, Yan S H et al. Experimental demonstration of 3D accelerating beam arrays[J]. Applied Optics, 55, 3090-3095(2016).
[5] Zhang Y Q, Shen J F, Min C J et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams[J]. Nano Letters, 18, 5538-5543(2018).
[6] Min C J, Yuan Y Q, Zhang Y Q et al. The hand of light for micro/nano-particle manipulation: research progress of optical tweezers[J]. Journal of Shenzhen University (Science and Engineering), 37, 441-458(2020).
[7] Zhou R X, Wang H Y, Zhu D B et al. New advances in the application of optical tweezers in biology[J]. Acta Laser Biology Sinica, 26, 289-293(2017).
[8] van Mameren J, Wuite G J L, Heller I. Introduction to optical tweezers: background, system designs, and commercial solutions[J]. Methods in Molecular Biology, 783, 1-20(2011).
[9] Feng N, Gao Y. Applications in life science of single-molecule optical tweezers[J]. Chinese Journal of Cell Biology, 37, 1345-1352(2015).
[10] Yao J Q, An Y, Zhao H Q. The development and application of optical tweezer[J]. Journal of Optoelectronics·Laser, 15, 123-128(2004).
[11] Li Y M, Gong L, Li D et al. Progress in optical tweezers technology[J]. Chinese Journal of Lasers, 42, 0101001(2015).
[12] Xiong T, Wang Z Q, Liu Y M et al. Research progress of optical tweezers in the detection of single cell and single molecule properties[J]. Laser Journal, 42, 7-17(2021).
[13] Li Y M, Wang H W, Gong L. Current applied researches of optical tweezers in biology[J]. Journal of Biology, 36, 1-8(2019).
[14] Guo H L, Qu E, Xu C H et al. Application of optical tweezers in life science[J]. Physics, 36, 476-482(2007).
[15] Zhu J, Sun R G. Applications of laser optical tweezers technique in single molecule and single cell science[J]. Laser Journal, 26, 90-91, 93(2005).
[16] Zhu Y Y, Wei Y, Gao Q J et al. Development and application of nanometer optical tweezers technology[J]. Optics & Optoelectronic Technology, 5, 81-83(2007).
[17] Li Y M, Lou L R. Optical tweezers in life Science[J]. Life Science Instruments, 2, 3-9(2004).
[18] Liang Y S, Yao B L, Lei M. Applications of holographic optical tweezers in biological research[J]. Chinese Journal of Lasers, 47, 0207020(2020).
[19] Shi Y Z, Song Q H, Toftul I et al. Optical manipulation with metamaterial structures[J]. Applied Physics Reviews, 9, 031303(2022).
[20] Xin H B, Li Y C, Liu Y C et al. Optical forces: from fundamental to biological applications[J]. Advanced Materials, 32, 2001994(2020).
[21] Zhang Y Q, Zhang S S, Min C J et al. Research progress of femtosecond optical tweezers and their applications[J]. Chinese Journal of Lasers, 48, 1918001(2021).
[22] Neuman K C, Chadd E H, Liou G F et al. Characterization of photodamage to Escherichia coli in optical traps[J]. Biophysical Journal, 77, 2856-2863(1999).
[23] Blázquez-Castro A. Optical tweezers: phototoxicity and thermal stress in cells and biomolecules[J]. Micromachines, 10, 507(2019).
[24] Babynina A, Fedoruk M, Kühler P et al. Bending gold nanorods with light[J]. Nano Letters, 16, 6485-6490(2016).
[25] Rasmussen M B, Oddershede L B, Siegumfeldt H. Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria[J]. Applied and Environmental Microbiology, 74, 2441-2446(2008).
[26] Garcés-Chávez V, Dholakia K, Spalding G C. Extended-area optically induced organization of microparticles on a surface[J]. Applied Physics Letters, 86, 031106(2005).
[27] Righini M, Zelenina A S, Girard C et al. Parallel and selective trapping in a patterned plasmonic landscape[J]. Nature Physics, 3, 477-480(2007).
[28] Zhao X T, Shi Y, Pan T et al. In situ single-cell surgery and intracellular organelle manipulation via thermoplasmonics combined optical trapping[J]. Nano Letters, 22, 402-410(2021).
[29] Zhao X T, Zhao N, Shi Y et al. Optical fiber tweezers: a versatile tool for optical trapping and manipulation[J]. Micromachines, 11, 114(2020).
[30] Xin H B, Li Y C, Xu D K et al. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis[J]. Small, 13, 1603418(2017).
[31] Wu H, Jiang C L, Tian S P et al. Multifunctional single-fiber optical tweezers for particle trapping and transport[J]. Chinese Optics Letters, 20, 121201(2022).
[32] Chen Z H, Li J G, Zheng Y B. Heat-mediated optical manipulation[J]. Chemical Reviews, 122, 3122-3179(2022).
[33] Chen J J, Kang Z W, Kong S K et al. Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles[J]. Optics Letters, 40, 3926-3929(2015).
[34] Chen J J, Cong H J, Loo F C et al. Thermal gradient induced tweezers for the manipulation of particles and cells[J]. Scientific Reports, 6, 1-13(2016).
[35] Braun D, Libchaber A. Trapping of DNA by thermophoretic depletion and convection[J]. Physical Review Letters, 89, 188103(2002).
[36] Kang Z W, Chen J J, Wu S Y et al. Trapping and assembling of particles and live cells on large-scale random gold nano-island substrates[J]. Scientific Reports, 5, 1-8(2015).
[37] Cong H J, Chen J J, Ho H P. Trapping, sorting and transferring of micro-particles and live cells using electric current-induced thermal tweezers[J]. Sensors and Actuators B, 264, 224-233(2018).
[38] Cong H J, Loo F C, Chen J J et al. Target trapping and in situ single-cell genetic marker detection with a focused optical beam[J]. Biosensors and Bioelectronics, 133, 236-242(2019).
[39] Lin L H, Wang M S, Peng X L et al. Opto-thermoelectric nanotweezers[J]. Nature Photonics, 12, 195-201(2018).
[40] Wang X Y, Yuan Y Q, Xie X et al. Graphene-based opto-thermoelectric tweezers[J]. Advanced Materials, 34, 2107691(2022).
[41] Li J G, Chen Z H, Liu Y R et al. Opto-refrigerative tweezers[J]. Science Advances, 7, eabh1101(2021).
[42] Zhou J X, Dai X Q, Jia B L et al. Nanorefrigerative tweezers for optofluidic manipulation[J]. Applied Physics Letters, 120, 163701(2022).
[43] Jauffred L, Samadi A, Klingberg H et al. Plasmonic heating of nanostructures[J]. Chemical Reviews, 119, 8087-8130(2019).
[44] Landau L, Lifshitz E[M]. Fluid mechanics(1987).
[45] Govorov A O, Zhang W, Skeini T et al. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances[J]. Nanoscale Research Letters, 1, 84-90(2006).
[46] Baffou G, Quidant R, García de Abajo F J. Nanoscale control of optical heating in complex plasmonic systems[J]. ACS Nano, 4, 709-716(2010).
[47] Sheik-Bahae M, Epstein R I. Optical refrigeration[J]. Nature Photonics, 1, 693-699(2007).
[48] Epstein R I, Buchwald M I, Edwards B C et al. Observation of laser-induced fluorescent cooling of a solid[J]. Nature, 377, 500-503(1995).
[49] Melgaard S D, Albrecht A R, Hehlen M P et al. Solid-state optical refrigeration to sub-100 Kelvin regime[J]. Scientific Reports, 6, 1-6(2016).
[50] Roder P B, Smith B E, Zhou X Z et al. Laser refrigeration of hydrothermal nanocrystals in physiological media[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 15024-15029(2015).
[51] Piazza R. Thermophoresis: moving particles with thermal gradients[J]. Soft Matter, 4, 1740-1744(2008).
[52] Piazza R, Parola A. Thermophoresis in colloidal suspensions[J]. Journal of Physics. Condensed Matter, 20, 153102(2008).
[53] Majee A, Würger A. Thermocharge of a hot spot in an electrolyte solution[J]. Soft Matter, 9, 2145-2153(2013).
[54] Reichl M, Herzog M, Götz A et al. Why charged molecules move across a temperature gradient: the role of electric fields[J]. Physical Review Letters, 112, 198101(2014).
[55] Ndukaife J C, Kildishev A V, Nnanna A G A et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer[J]. Nature Nanotechnology, 11, 53-59(2016).
[56] Chen J J, Loo J, Wang D P et al. Thermal optofluidics: principles and applications[J]. Advanced Optical Materials, 8, 1900829(2019).
[57] Guyon E, Hulin J P, Petit L et al[M]. Physical hydrodynamics(2001).
[58] Donner J S, Baffou G, McCloskey D et al. Plasmon-assisted optofluidics[J]. ACS Nano, 5, 5457-5462(2011).
[59] Fränzl M, Cichos F. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows[J]. Nature Communications, 13, 656(2022).
[60] Bregulla A P, Würger A, Günther K et al. Thermo-osmotic flow in thin films[J]. Physical Review Letters, 116, 188303(2016).
[61] Würger A. Thermal non-equilibrium transport in colloids[J]. Reports on Progress in Physics, 73, 126601(2010).
[62] Maeda Y T, Tlusty T, Libchaber A. Effects of long DNA folding and small RNA stem-loop in thermophoresis[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 17972-17977(2012).
[63] Scriven L E, Sternling C V. The Marangoni effects[J]. Nature, 187, 186-188(1960).
[64] Quispe J E, Inga J C, Muñoz E M et al. Single particle manipulation/sorting through the transient response of thermocapillary convection flows[C](2016).
[65] Eötvös R. Ueber den zusammenhang der oberflächenspannung der Flüssigkeiten mit ihrem molecularvolumen[J]. Annalen Der Physik, 263, 448-459(1886).
[66] Palit S R. Thermodynamic interpretation of the Eötvös constant[J]. Nature, 177, 1180(1956).
[67] Thormann E, Simonsen A C, Hansen P L et al. Interactions between a polystyrene particle and hydrophilic and hydrophobic surfaces in aqueous solutions[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 24, 7278-7284(2008).
[68] Alexander B, Karandeep S, Limor H et al. Nanoparticle-decorated erythrocytes reveal that particle size controls the extent of adsorption, cell shape, and cell deformability[J]. ACS Applied Nano Materials, 1, 3785-3799(2018).
[69] Saeed Z M, Esben T. Hofmeister effect on PNIPAM in bulk and at an interface: surface partitioning of weakly hydrated anions[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 33, 4806-4815(2017).
[70] Decrop D, Brans T, Gijsenbergh P et al. Optical manipulation of single magnetic beads in a microwell array on a digital microfluidic chip[J]. Analytical Chemistry, 88, 8596-8603(2016).
[71] Li D Y, Pan Y L, Zhao X Z et al. Study on nanobubble-on-pancake objects forming at polystyrene/water interface[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 32, 11256-11264(2016).
[72] Lin L H, Peng X L, Mao Z M et al. Interfacial-entropy-driven thermophoretic tweezers[J]. Lab on a Chip, 17, 3061-3070(2017).
[73] Jiang H R, Wada H, Yoshinaga N et al. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient[J]. Physical Review Letters, 102, 208301(2009).
[74] Hu W Q, Ishii K S, Fan Q H et al. Hydrogel microrobots actuated by optically generated vapour bubbles[J]. Lab on a Chip, 12, 3821-3826(2012).
[75] Shi Y, Wang D N, Xiao Y Q et al. Light-induced cold Marangoni flow for microswarm actuation: from intelligent behaviors to collective drug delivery[J]. Laser & Photonics Reviews, 16, 2200533(2022).
[76] Kang Z W, Chen J J, Wu S Y et al. Plasmonic absorption activated trapping and assembling of colloidal crystals with non-resonant continuous gold films[J]. RSC Advances, 5, 105409-105415(2015).
[77] Hong C C, Yang S, Ndukaife J C. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers[J]. Nature Nanotechnology, 15, 908-913(2020).
[78] Brändén C I, Tooze J[M]. Introduction to protein structure(1999).
[79] Pang Y J, Gordon R. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film[J]. Nano Letters, 11, 3763-3767(2011).
[80] Chen Y F, Serey X, Sarkar R et al. Controlled photonic manipulation of proteins and other nanomaterials[J]. Nano Letters, 12, 1633-1637(2012).
[81] Shoji T, Kitamura N, Tsuboi Y. Resonant excitation effect on optical trapping of myoglobin: the important role of a heme cofactor[J]. The Journal of Physical Chemistry C, 117, 10691-10697(2013).
[82] Pang Y J, Gordon R. Optical trapping of a single protein[J]. Nano Letters, 12, 402-406(2012).
[83] Fränzl M, Thalheim T, Adler J et al. Thermophoretic trap for single amyloid fibril and protein aggregation studies[J]. Nature Methods, 16, 611-614(2019).
[84] Chen J J, Zeng Y J, Zhou J et al. Optothermophoretic flipping method for biomolecule interaction enhancement[J]. Biosensors and Bioelectronics, 204, 114084(2022).
[85] Koster D A, Crut A, Shuman S et al. Cellular strategies for regulating DNA supercoiling: a single-molecule perspective[J]. Cell, 142, 519-530(2010).
[86] Abraham M, Dror O, Nussinov R et al. Analysis and classification of RNA tertiary structures[J]. RNA, 14, 2274-2289(2008).
[87] Maeda Y T. (2+1)-dimensional manipulation of soft biological materials by opto-thermal diffusiophoresis[J]. Applied Physics Letters, 103, 243704(2013).
[88] Jiang H R, Sano M. Stretching single molecular DNA by temperature gradient[J]. Applied Physics Letters, 91, 154104(2007).
[89] Kreysing M, Keil L, Lanzmich S et al. Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length[J]. Nature Chemistry, 7, 203-208(2015).
[90] Fukuyama T, Fuke A, Mochizuki M et al. Directing and boosting of cell migration by the entropic force gradient in polymer solution[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 31, 12567-12572(2015).
[91] Fukuyama T, Maeda Y T. Opto-thermal diffusiophoresis of soft biological matter: from physical principle to molecular manipulation[J]. Biophysical Reviews, 12, 309-315(2020).
[92] Saiki R K, Scharf S, Faloona F et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[J]. Science, 230, 1350-1354(1985).
[93] Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G[J]. Immunochemistry, 8, 871-874(1971).
[94] Spielberg F, Ryder R, Harris J et al. Field testing and comparative evaluation of rapid, visually read screening assays for antibody to human immunodeficiency virus[J]. The Lancet, 333, 580-584(1989).
[95] Van Dyke K, Trush M, Wilson M et al. Luminol-dependent chemiluminescence analysis of cellular and humoral defects of phagocytosis using a chem-glo photometer[J]. Microchemical Journal, 22, 463-474(1977).
[96] Ashkin A, Dziedzic J M. Optical trapping and manipulation of viruses and bacteria[J]. Science, 235, 1517-1520(1987).
[97] Neuman K C, Block S M. Optical trapping[J]. The Review of Scientific Instruments, 75, 2787-2809(2004).
[98] Shi Y Z, Zhao H T, Nguyen K T et al. Nanophotonic array-induced dynamic behavior for label-free shape-selective bacteria sieving[J]. ACS Nano, 13, 12070-12080(2019).
[99] Shi Y Z, Zhao H T, Chin L K et al. Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale[J]. Nano Letters, 20, 5193-5200(2020).
[100] Shi Y Z, Nguyen K T, Chin L K et al. Trapping and detection of single viruses in an optofluidic chip[J]. ACS Sensors, 6, 3445-3450(2021).
[101] Lei H X, Zhang Y, Li X M et al. Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber[J]. Lab on a Chip, 11, 2241-2246(2011).
[102] Xin H B, Li X M, Li B J. Massive photothermal trapping and migration of particles by a tapered optical fiber[J]. Optics Express, 19, 17065-17074(2011).
[103] Yamamoto Y, Shimizu E, Nishimura Y et al. Development of a rapid bacterial counting method based on photothermal assembling[J]. Optical Materials Express, 6, 1280-1285(2016).
[104] Johnstone R M, Bianchini A, Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions[J]. Blood, 74, 1844-1851(1989).
[105] Liu H Y, Kumar R, Zhong C T et al. Rapid capture of cancer extracellular vesicles by lipid patch microarrays[J]. Advanced Materials, 33, 2008493(2021).
[106] Witwer K W, Buzás E I, Bemis L T et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research[J]. Journal of Extracellular Vesicles, 2, 20360(2013).
[107] Liu C, Zhao J X, Tian F et al. Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers[J]. Nature Biomedical Engineering, 3, 183-193(2019).
[108] Deng J Q, Zhao S, Li J H et al. One-step thermophoretic AND gate operation on extracellular vesicles improves diagnosis of prostate cancer[J]. Angewandte Chemie, 134, e202207037(2022).
[109] Liu X Z, Yang K, Wadhwa A et al. Development of an AC electrokinetics-based immunoassay system for on-site serodiagnosis of infectious diseases[J]. Sensors and Actuators A, 171, 406-413(2011).
[110] Ramos A, González A, Castellanos A et al. Pumping of liquids with AC voltages applied to asymmetric pairs of microelectrodes[J]. Physical Review E, 67, 056302(2003).
[111] Wu J. Biased AC electro-osmosis for on-chip bioparticle processing[J]. IEEE Transactions on Nanotechnology, 5, 84-89(2006).
[112] Garcia-Guirado J, Rica R A, Ortega J et al. Overcoming diffusion-limited biosensing by electrothermoplasmonics[J]. ACS Photonics, 5, 3673-3679(2018).
[113] Tokonami S, Kurita S, Yoshikawa R et al. Light-induced assembly of living bacteria with honeycomb substrate[J]. Science Advances, 6, eaaz5757(2020).
[114] Kim Y, Ding H R, Zheng Y B. Enhancing surface capture and sensing of proteins with low-power optothermal bubbles in a biphasic liquid[J]. Nano Letters, 20, 7020-7027(2020).
[115] Li H, Chen X X, Zhang Y et al. Chloroplast optical microlens with variable focus[J]. Acta Optica Sinica, 42, 0411003(2022).
[116] Huang X M, Shi H, Zhao H et al. Capture and SERS detection of nano plastics based on photothermal effect[J]. Acta Optica Sinica, 42, 1624001(2022).
[117] Monisha K, Suresh K, Bankapur A et al. Optical printing of plasmonic nanoparticles for SERS studies of analytes and thermophoretically trapped biological cell[J]. Sensors and Actuators B, 377, 133047(2023).
[118] Deng R P, Zhang Y Q, Wang X Y et al. In situ intracellular Raman spectroscopic detection with graphene-based thermoelectric optical tweezers[J]. Sensors and Actuators B, 361, 131722(2022).
[119] Li T Y, Xu X H, Fu B Y et al. Integrating the optical tweezers and spanner onto individual single-layer metasurfaces[J]. Photonics Research, 9, 1062-1068(2021).
Get Citation
Copy Citation Text
Yili Zhong, Yuhang Peng, Jiajie Chen, Jianxing Zhou, Xiaoqi Dai, Han Zhang, Junle Qu, Yonghong Shao. Optical Temperature Field-Driven Tweezers: Principles and Biomedical Applications[J]. Acta Optica Sinica, 2023, 43(14): 1400001
Category: Reviews
Received: Feb. 8, 2023
Accepted: Mar. 21, 2023
Published Online: Jul. 13, 2023
The Author Email: Jiajie Chen (cjj@szu.edu.cn)