Acta Optica Sinica, Volume. 43, Issue 14, 1400001(2023)

Optical Temperature Field-Driven Tweezers: Principles and Biomedical Applications

Yili Zhong, Yuhang Peng, Jiajie Chen*, Jianxing Zhou, Xiaoqi Dai, Han Zhang, Junle Qu, and Yonghong Shao
Author Affiliations
  • College of Physics and Optoelectronic Engineering, Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, Guangdong, China
  • show less
    References(119)

    [1] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).

    [2] Yuan L B, Liu Z H, Yang J et al. Twin-core fiber optical tweezers[J]. Optics Express, 16, 4559-4566(2008).

    [3] Min C J, Shen Z, Shen J F et al. Focused plasmonic trapping of metallic particles[J]. Nature Communications, 4, 1-7(2013).

    [4] Yu X H, Li R Z, Yan S H et al. Experimental demonstration of 3D accelerating beam arrays[J]. Applied Optics, 55, 3090-3095(2016).

    [5] Zhang Y Q, Shen J F, Min C J et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams[J]. Nano Letters, 18, 5538-5543(2018).

    [6] Min C J, Yuan Y Q, Zhang Y Q et al. The hand of light for micro/nano-particle manipulation: research progress of optical tweezers[J]. Journal of Shenzhen University (Science and Engineering), 37, 441-458(2020).

    [7] Zhou R X, Wang H Y, Zhu D B et al. New advances in the application of optical tweezers in biology[J]. Acta Laser Biology Sinica, 26, 289-293(2017).

    [8] van Mameren J, Wuite G J L, Heller I. Introduction to optical tweezers: background, system designs, and commercial solutions[J]. Methods in Molecular Biology, 783, 1-20(2011).

    [9] Feng N, Gao Y. Applications in life science of single-molecule optical tweezers[J]. Chinese Journal of Cell Biology, 37, 1345-1352(2015).

    [10] Yao J Q, An Y, Zhao H Q. The development and application of optical tweezer[J]. Journal of Optoelectronics·Laser, 15, 123-128(2004).

    [11] Li Y M, Gong L, Li D et al. Progress in optical tweezers technology[J]. Chinese Journal of Lasers, 42, 0101001(2015).

    [12] Xiong T, Wang Z Q, Liu Y M et al. Research progress of optical tweezers in the detection of single cell and single molecule properties[J]. Laser Journal, 42, 7-17(2021).

    [13] Li Y M, Wang H W, Gong L. Current applied researches of optical tweezers in biology[J]. Journal of Biology, 36, 1-8(2019).

    [14] Guo H L, Qu E, Xu C H et al. Application of optical tweezers in life science[J]. Physics, 36, 476-482(2007).

    [15] Zhu J, Sun R G. Applications of laser optical tweezers technique in single molecule and single cell science[J]. Laser Journal, 26, 90-91, 93(2005).

    [16] Zhu Y Y, Wei Y, Gao Q J et al. Development and application of nanometer optical tweezers technology[J]. Optics & Optoelectronic Technology, 5, 81-83(2007).

    [17] Li Y M, Lou L R. Optical tweezers in life Science[J]. Life Science Instruments, 2, 3-9(2004).

    [18] Liang Y S, Yao B L, Lei M. Applications of holographic optical tweezers in biological research[J]. Chinese Journal of Lasers, 47, 0207020(2020).

    [19] Shi Y Z, Song Q H, Toftul I et al. Optical manipulation with metamaterial structures[J]. Applied Physics Reviews, 9, 031303(2022).

    [20] Xin H B, Li Y C, Liu Y C et al. Optical forces: from fundamental to biological applications[J]. Advanced Materials, 32, 2001994(2020).

    [21] Zhang Y Q, Zhang S S, Min C J et al. Research progress of femtosecond optical tweezers and their applications[J]. Chinese Journal of Lasers, 48, 1918001(2021).

    [22] Neuman K C, Chadd E H, Liou G F et al. Characterization of photodamage to Escherichia coli in optical traps[J]. Biophysical Journal, 77, 2856-2863(1999).

    [23] Blázquez-Castro A. Optical tweezers: phototoxicity and thermal stress in cells and biomolecules[J]. Micromachines, 10, 507(2019).

    [24] Babynina A, Fedoruk M, Kühler P et al. Bending gold nanorods with light[J]. Nano Letters, 16, 6485-6490(2016).

    [25] Rasmussen M B, Oddershede L B, Siegumfeldt H. Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria[J]. Applied and Environmental Microbiology, 74, 2441-2446(2008).

    [26] Garcés-Chávez V, Dholakia K, Spalding G C. Extended-area optically induced organization of microparticles on a surface[J]. Applied Physics Letters, 86, 031106(2005).

    [27] Righini M, Zelenina A S, Girard C et al. Parallel and selective trapping in a patterned plasmonic landscape[J]. Nature Physics, 3, 477-480(2007).

    [28] Zhao X T, Shi Y, Pan T et al. In situ single-cell surgery and intracellular organelle manipulation via thermoplasmonics combined optical trapping[J]. Nano Letters, 22, 402-410(2021).

    [29] Zhao X T, Zhao N, Shi Y et al. Optical fiber tweezers: a versatile tool for optical trapping and manipulation[J]. Micromachines, 11, 114(2020).

    [30] Xin H B, Li Y C, Xu D K et al. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis[J]. Small, 13, 1603418(2017).

    [31] Wu H, Jiang C L, Tian S P et al. Multifunctional single-fiber optical tweezers for particle trapping and transport[J]. Chinese Optics Letters, 20, 121201(2022).

    [32] Chen Z H, Li J G, Zheng Y B. Heat-mediated optical manipulation[J]. Chemical Reviews, 122, 3122-3179(2022).

    [33] Chen J J, Kang Z W, Kong S K et al. Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles[J]. Optics Letters, 40, 3926-3929(2015).

    [34] Chen J J, Cong H J, Loo F C et al. Thermal gradient induced tweezers for the manipulation of particles and cells[J]. Scientific Reports, 6, 1-13(2016).

    [35] Braun D, Libchaber A. Trapping of DNA by thermophoretic depletion and convection[J]. Physical Review Letters, 89, 188103(2002).

    [36] Kang Z W, Chen J J, Wu S Y et al. Trapping and assembling of particles and live cells on large-scale random gold nano-island substrates[J]. Scientific Reports, 5, 1-8(2015).

    [37] Cong H J, Chen J J, Ho H P. Trapping, sorting and transferring of micro-particles and live cells using electric current-induced thermal tweezers[J]. Sensors and Actuators B, 264, 224-233(2018).

    [38] Cong H J, Loo F C, Chen J J et al. Target trapping and in situ single-cell genetic marker detection with a focused optical beam[J]. Biosensors and Bioelectronics, 133, 236-242(2019).

    [39] Lin L H, Wang M S, Peng X L et al. Opto-thermoelectric nanotweezers[J]. Nature Photonics, 12, 195-201(2018).

    [40] Wang X Y, Yuan Y Q, Xie X et al. Graphene-based opto-thermoelectric tweezers[J]. Advanced Materials, 34, 2107691(2022).

    [41] Li J G, Chen Z H, Liu Y R et al. Opto-refrigerative tweezers[J]. Science Advances, 7, eabh1101(2021).

    [42] Zhou J X, Dai X Q, Jia B L et al. Nanorefrigerative tweezers for optofluidic manipulation[J]. Applied Physics Letters, 120, 163701(2022).

    [43] Jauffred L, Samadi A, Klingberg H et al. Plasmonic heating of nanostructures[J]. Chemical Reviews, 119, 8087-8130(2019).

    [44] Landau L, Lifshitz E[M]. Fluid mechanics(1987).

    [45] Govorov A O, Zhang W, Skeini T et al. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances[J]. Nanoscale Research Letters, 1, 84-90(2006).

    [46] Baffou G, Quidant R, García de Abajo F J. Nanoscale control of optical heating in complex plasmonic systems[J]. ACS Nano, 4, 709-716(2010).

    [47] Sheik-Bahae M, Epstein R I. Optical refrigeration[J]. Nature Photonics, 1, 693-699(2007).

    [48] Epstein R I, Buchwald M I, Edwards B C et al. Observation of laser-induced fluorescent cooling of a solid[J]. Nature, 377, 500-503(1995).

    [49] Melgaard S D, Albrecht A R, Hehlen M P et al. Solid-state optical refrigeration to sub-100 Kelvin regime[J]. Scientific Reports, 6, 1-6(2016).

    [50] Roder P B, Smith B E, Zhou X Z et al. Laser refrigeration of hydrothermal nanocrystals in physiological media[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 15024-15029(2015).

    [51] Piazza R. Thermophoresis: moving particles with thermal gradients[J]. Soft Matter, 4, 1740-1744(2008).

    [52] Piazza R, Parola A. Thermophoresis in colloidal suspensions[J]. Journal of Physics. Condensed Matter, 20, 153102(2008).

    [53] Majee A, Würger A. Thermocharge of a hot spot in an electrolyte solution[J]. Soft Matter, 9, 2145-2153(2013).

    [54] Reichl M, Herzog M, Götz A et al. Why charged molecules move across a temperature gradient: the role of electric fields[J]. Physical Review Letters, 112, 198101(2014).

    [55] Ndukaife J C, Kildishev A V, Nnanna A G A et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer[J]. Nature Nanotechnology, 11, 53-59(2016).

    [56] Chen J J, Loo J, Wang D P et al. Thermal optofluidics: principles and applications[J]. Advanced Optical Materials, 8, 1900829(2019).

    [57] Guyon E, Hulin J P, Petit L et al[M]. Physical hydrodynamics(2001).

    [58] Donner J S, Baffou G, McCloskey D et al. Plasmon-assisted optofluidics[J]. ACS Nano, 5, 5457-5462(2011).

    [59] Fränzl M, Cichos F. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows[J]. Nature Communications, 13, 656(2022).

    [60] Bregulla A P, Würger A, Günther K et al. Thermo-osmotic flow in thin films[J]. Physical Review Letters, 116, 188303(2016).

    [61] Würger A. Thermal non-equilibrium transport in colloids[J]. Reports on Progress in Physics, 73, 126601(2010).

    [62] Maeda Y T, Tlusty T, Libchaber A. Effects of long DNA folding and small RNA stem-loop in thermophoresis[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 17972-17977(2012).

    [63] Scriven L E, Sternling C V. The Marangoni effects[J]. Nature, 187, 186-188(1960).

    [64] Quispe J E, Inga J C, Muñoz E M et al. Single particle manipulation/sorting through the transient response of thermocapillary convection flows[C](2016).

    [65] Eötvös R. Ueber den zusammenhang der oberflächenspannung der Flüssigkeiten mit ihrem molecularvolumen[J]. Annalen Der Physik, 263, 448-459(1886).

    [66] Palit S R. Thermodynamic interpretation of the Eötvös constant[J]. Nature, 177, 1180(1956).

    [67] Thormann E, Simonsen A C, Hansen P L et al. Interactions between a polystyrene particle and hydrophilic and hydrophobic surfaces in aqueous solutions[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 24, 7278-7284(2008).

    [68] Alexander B, Karandeep S, Limor H et al. Nanoparticle-decorated erythrocytes reveal that particle size controls the extent of adsorption, cell shape, and cell deformability[J]. ACS Applied Nano Materials, 1, 3785-3799(2018).

    [69] Saeed Z M, Esben T. Hofmeister effect on PNIPAM in bulk and at an interface: surface partitioning of weakly hydrated anions[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 33, 4806-4815(2017).

    [70] Decrop D, Brans T, Gijsenbergh P et al. Optical manipulation of single magnetic beads in a microwell array on a digital microfluidic chip[J]. Analytical Chemistry, 88, 8596-8603(2016).

    [71] Li D Y, Pan Y L, Zhao X Z et al. Study on nanobubble-on-pancake objects forming at polystyrene/water interface[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 32, 11256-11264(2016).

    [72] Lin L H, Peng X L, Mao Z M et al. Interfacial-entropy-driven thermophoretic tweezers[J]. Lab on a Chip, 17, 3061-3070(2017).

    [73] Jiang H R, Wada H, Yoshinaga N et al. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient[J]. Physical Review Letters, 102, 208301(2009).

    [74] Hu W Q, Ishii K S, Fan Q H et al. Hydrogel microrobots actuated by optically generated vapour bubbles[J]. Lab on a Chip, 12, 3821-3826(2012).

    [75] Shi Y, Wang D N, Xiao Y Q et al. Light-induced cold Marangoni flow for microswarm actuation: from intelligent behaviors to collective drug delivery[J]. Laser & Photonics Reviews, 16, 2200533(2022).

    [76] Kang Z W, Chen J J, Wu S Y et al. Plasmonic absorption activated trapping and assembling of colloidal crystals with non-resonant continuous gold films[J]. RSC Advances, 5, 105409-105415(2015).

    [77] Hong C C, Yang S, Ndukaife J C. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers[J]. Nature Nanotechnology, 15, 908-913(2020).

    [78] Brändén C I, Tooze J[M]. Introduction to protein structure(1999).

    [79] Pang Y J, Gordon R. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film[J]. Nano Letters, 11, 3763-3767(2011).

    [80] Chen Y F, Serey X, Sarkar R et al. Controlled photonic manipulation of proteins and other nanomaterials[J]. Nano Letters, 12, 1633-1637(2012).

    [81] Shoji T, Kitamura N, Tsuboi Y. Resonant excitation effect on optical trapping of myoglobin: the important role of a heme cofactor[J]. The Journal of Physical Chemistry C, 117, 10691-10697(2013).

    [82] Pang Y J, Gordon R. Optical trapping of a single protein[J]. Nano Letters, 12, 402-406(2012).

    [83] Fränzl M, Thalheim T, Adler J et al. Thermophoretic trap for single amyloid fibril and protein aggregation studies[J]. Nature Methods, 16, 611-614(2019).

    [84] Chen J J, Zeng Y J, Zhou J et al. Optothermophoretic flipping method for biomolecule interaction enhancement[J]. Biosensors and Bioelectronics, 204, 114084(2022).

    [85] Koster D A, Crut A, Shuman S et al. Cellular strategies for regulating DNA supercoiling: a single-molecule perspective[J]. Cell, 142, 519-530(2010).

    [86] Abraham M, Dror O, Nussinov R et al. Analysis and classification of RNA tertiary structures[J]. RNA, 14, 2274-2289(2008).

    [87] Maeda Y T. (2+1)-dimensional manipulation of soft biological materials by opto-thermal diffusiophoresis[J]. Applied Physics Letters, 103, 243704(2013).

    [88] Jiang H R, Sano M. Stretching single molecular DNA by temperature gradient[J]. Applied Physics Letters, 91, 154104(2007).

    [89] Kreysing M, Keil L, Lanzmich S et al. Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length[J]. Nature Chemistry, 7, 203-208(2015).

    [90] Fukuyama T, Fuke A, Mochizuki M et al. Directing and boosting of cell migration by the entropic force gradient in polymer solution[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 31, 12567-12572(2015).

    [91] Fukuyama T, Maeda Y T. Opto-thermal diffusiophoresis of soft biological matter: from physical principle to molecular manipulation[J]. Biophysical Reviews, 12, 309-315(2020).

    [92] Saiki R K, Scharf S, Faloona F et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[J]. Science, 230, 1350-1354(1985).

    [93] Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G[J]. Immunochemistry, 8, 871-874(1971).

    [94] Spielberg F, Ryder R, Harris J et al. Field testing and comparative evaluation of rapid, visually read screening assays for antibody to human immunodeficiency virus[J]. The Lancet, 333, 580-584(1989).

    [95] Van Dyke K, Trush M, Wilson M et al. Luminol-dependent chemiluminescence analysis of cellular and humoral defects of phagocytosis using a chem-glo photometer[J]. Microchemical Journal, 22, 463-474(1977).

    [96] Ashkin A, Dziedzic J M. Optical trapping and manipulation of viruses and bacteria[J]. Science, 235, 1517-1520(1987).

    [97] Neuman K C, Block S M. Optical trapping[J]. The Review of Scientific Instruments, 75, 2787-2809(2004).

    [98] Shi Y Z, Zhao H T, Nguyen K T et al. Nanophotonic array-induced dynamic behavior for label-free shape-selective bacteria sieving[J]. ACS Nano, 13, 12070-12080(2019).

    [99] Shi Y Z, Zhao H T, Chin L K et al. Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale[J]. Nano Letters, 20, 5193-5200(2020).

    [100] Shi Y Z, Nguyen K T, Chin L K et al. Trapping and detection of single viruses in an optofluidic chip[J]. ACS Sensors, 6, 3445-3450(2021).

    [101] Lei H X, Zhang Y, Li X M et al. Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber[J]. Lab on a Chip, 11, 2241-2246(2011).

    [102] Xin H B, Li X M, Li B J. Massive photothermal trapping and migration of particles by a tapered optical fiber[J]. Optics Express, 19, 17065-17074(2011).

    [103] Yamamoto Y, Shimizu E, Nishimura Y et al. Development of a rapid bacterial counting method based on photothermal assembling[J]. Optical Materials Express, 6, 1280-1285(2016).

    [104] Johnstone R M, Bianchini A, Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions[J]. Blood, 74, 1844-1851(1989).

    [105] Liu H Y, Kumar R, Zhong C T et al. Rapid capture of cancer extracellular vesicles by lipid patch microarrays[J]. Advanced Materials, 33, 2008493(2021).

    [106] Witwer K W, Buzás E I, Bemis L T et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research[J]. Journal of Extracellular Vesicles, 2, 20360(2013).

    [107] Liu C, Zhao J X, Tian F et al. Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers[J]. Nature Biomedical Engineering, 3, 183-193(2019).

    [108] Deng J Q, Zhao S, Li J H et al. One-step thermophoretic AND gate operation on extracellular vesicles improves diagnosis of prostate cancer[J]. Angewandte Chemie, 134, e202207037(2022).

    [109] Liu X Z, Yang K, Wadhwa A et al. Development of an AC electrokinetics-based immunoassay system for on-site serodiagnosis of infectious diseases[J]. Sensors and Actuators A, 171, 406-413(2011).

    [110] Ramos A, González A, Castellanos A et al. Pumping of liquids with AC voltages applied to asymmetric pairs of microelectrodes[J]. Physical Review E, 67, 056302(2003).

    [111] Wu J. Biased AC electro-osmosis for on-chip bioparticle processing[J]. IEEE Transactions on Nanotechnology, 5, 84-89(2006).

    [112] Garcia-Guirado J, Rica R A, Ortega J et al. Overcoming diffusion-limited biosensing by electrothermoplasmonics[J]. ACS Photonics, 5, 3673-3679(2018).

    [113] Tokonami S, Kurita S, Yoshikawa R et al. Light-induced assembly of living bacteria with honeycomb substrate[J]. Science Advances, 6, eaaz5757(2020).

    [114] Kim Y, Ding H R, Zheng Y B. Enhancing surface capture and sensing of proteins with low-power optothermal bubbles in a biphasic liquid[J]. Nano Letters, 20, 7020-7027(2020).

    [115] Li H, Chen X X, Zhang Y et al. Chloroplast optical microlens with variable focus[J]. Acta Optica Sinica, 42, 0411003(2022).

    [116] Huang X M, Shi H, Zhao H et al. Capture and SERS detection of nano plastics based on photothermal effect[J]. Acta Optica Sinica, 42, 1624001(2022).

    [117] Monisha K, Suresh K, Bankapur A et al. Optical printing of plasmonic nanoparticles for SERS studies of analytes and thermophoretically trapped biological cell[J]. Sensors and Actuators B, 377, 133047(2023).

    [118] Deng R P, Zhang Y Q, Wang X Y et al. In situ intracellular Raman spectroscopic detection with graphene-based thermoelectric optical tweezers[J]. Sensors and Actuators B, 361, 131722(2022).

    [119] Li T Y, Xu X H, Fu B Y et al. Integrating the optical tweezers and spanner onto individual single-layer metasurfaces[J]. Photonics Research, 9, 1062-1068(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yili Zhong, Yuhang Peng, Jiajie Chen, Jianxing Zhou, Xiaoqi Dai, Han Zhang, Junle Qu, Yonghong Shao. Optical Temperature Field-Driven Tweezers: Principles and Biomedical Applications[J]. Acta Optica Sinica, 2023, 43(14): 1400001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Feb. 8, 2023

    Accepted: Mar. 21, 2023

    Published Online: Jul. 13, 2023

    The Author Email: Jiajie Chen (cjj@szu.edu.cn)

    DOI:10.3788/AOS230530

    Topics