Acta Photonica Sinica, Volume. 51, Issue 8, 0851517(2022)

Advances in Multicolor Single-molecule Localization Microscopy(Invited)

Yuehan ZHAO and Xiang HAO
Author Affiliations
  • [in Chinese]
  • show less
    References(67)

    [1] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780(1994).

    [2] KLAR T A, JAKOBS S, DYBA M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences, 97, 8206-8210(2000).

    [3] GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [4] GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).

    [5] BETZIG E, PATTERSON G H, SOUGRAT R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [6] RUST M J, BATES M, ZHUANG Xiaowei. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [7] SHARONOV A, HOCHSTRASSER R M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes[J]. Proceedings of the National Academy of Sciences, 103, 18911-18916(2006).

    [8] GU Lusheng, LI Yuanyuan, ZHANG Shuwen et al. Molecular resolution imaging by repetitive optical selective exposure[J]. Nature Methods, 16, 1114-1118(2019).

    [9] BALZAROTTI F, EILERS Y, GWOSCH K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).

    [10] BETZIG E. Proposed method for molecular optical imaging[J]. Optics Letters, 20, 237(1995).

    [11] BALZAROTTI F, EILERS Y, GWOSCH K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).

    [12] XU Ke, ZHONG Guisheng, ZHUANG Xiaowei. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons[J]. Science, 339, 452-456(2013).

    [13] FLOTTMANN B, GUNKEl M, LISAUSKAS T et al. Correlative light microscopy for high-content screening[J]. BioTechniques, Future Science, 55, 243-252(2013).

    [14] HANNE J, ZILA V, HEILEMANN M et al. Super-resolved insights into human immunodeficiency virus biology[J]. FEBS Letters, 590, 1858-1876(2016).

    [15] MURANYI W, MALKUSCH S, MÜLLER B et al. Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail[J]. PLoS Pathogens, 9, e1003198(2013).

    [16] PAN Leiting, HU Fen, ZHANG Xinzheng等. Multicolor single-molecule localization super-resolution microscopy[J]. Acta Optica Sinica, 37, 0318010(2017).

    [17] THOMPSON R E, LARSON D R, WEBB W W. Precise nanometer localization analysis for individual fluorescent probes[J]. Biophysical Journal, 82, 2775-2783(2002).

    [18] LELEK M, GYPARAKI M T, BELIU G et al. Single-molecule localization microscopy[J]. Nature Reviews Methods Primers, 1, 39(2021).

    [19] NIEUWENHUIZEN R P J, LIDKE K A, BATES M et al. Measuring image resolution in optical nanoscopy[J]. Nature Methods, 10, 557-562(2013).

    [20] LÖSCHBERGER A, VAN DE LINDE S, DABAUVALLE M C et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution[J]. Journal of Cell Science, 125, 570-575(2012).

    [21] ENDESFELDER U, MALKUSCH S, FLOTTMANN B et al. Chemically induced photoswitching of fluorescent probes—a general concept for super-resolution microscopy[J]. Molecules, 16, 3106-3118(2011).

    [22] LEHMANN M, ROCHA S, MANGEAT B et al. Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction[J]. PLoS Pathogens, 7, e1002456(2011).

    [23] SPAHN C, CELLA-ZANNACCHI F, ENDESFELDER U et al. Correlative super-resolution imaging of RNA polymerase distribution and dynamics, bacterial membrane and chromosomal structure in Escherichia coli[J]. Methods and Applications in Fluorescence, 3, 014005(2015).

    [24] JONES S A, SHIM S H, He Jiang et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 8, 499-508(2011).

    [25] BATES M, HUANG Bo, DEMPSEY G T et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 317, 1749-1753(2007).

    [26] DANI A, HUANG Bo, BERGAN J et al. Superresolution imaging of chemical synapses in the brain[J]. Neuron, 68, 843-856(2010).

    [27] LUBECK E, CAI Long. Single-cell systems biology by super-resolution imaging and combinatorial labeling[J]. Nature Methods, 9, 743-748(2012).

    [28] TAM J, CORDIER G A, BORBELY J S et al. Cross-talk-free multi-color STORM imaging using a single fluorophore[J]. PLOS ONE, 9, e101772(2014).

    [29] JUNGMANN R, AVENDAÑO M S, WOEHRSTEIN J B et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT[J]. Nature Methods, 11, 313-318(2014).

    [30] WADE O K, WOEHRSTEIN J B, NICKELS P C et al. 124-color super-resolution imaging by engineering DNA-PAINT blinking kinetics[J]. Nano Letters, 19, 2641-2646(2019).

    [31] DESCHOUT H, ZANACCHI F C, MLODZIANOSKI M et al. Precisely and accurately localizing single emitters in fluorescence microscopy[J]. Nature Methods, 11, 253-266(2014).

    [32] BOSSI M, FÖLLING J, BELOV V N et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species[J]. Nano Letters, 8, 2463-2468(2008).

    [33] TESTA I, WURM C A, MEDDA R et al. Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength[J]. Biophysical Journal, 99, 2686-2694(2010).

    [34] LAMPE A, HAUCKE V, SIGRIST S J et al. Multi-colour direct STORM with red emitting carbocyanines[J]. Biology of the Cell, 104, 229-237(2012).

    [35] WINTERFLOOD C M, PLATONOVA E, ALBRECHT D et al. Dual-color 3D superresolution microscopy by combined spectral-demixing and biplane imaging[J]. Biophysical journal, 109, 3-6(2015).

    [36] ZHANG Yongdeng, SCHROEDER L K, LESSARD M D et al. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging[J]. Nature Methods, 17, 225-231(2020).

    [37] VISSA A, GIULIANI M, KIM P K et al. Hyperspectral super-resolution imaging with far-red emitting fluorophores using a thin-film tunable filter[J]. Review of Scientific Instruments, 91, 123703(2020).

    [38] WANG Yujie, KUANG Weibing, SHANG Mingtao et al. Two-color super-resolution localization microscopy via joint encoding of emitter location and color[J]. Optics Express, 29, 34797(2021).

    [39] CHEN Jianwei, YAO Benxi, YANG Zhichao et al. Ratiometric 4Pi single-molecule localization with optimal resolution and color assignment[J]. Optics Letters, 47, 325-328(2022).

    [40] LI Yiming, SHI Wei, LIU Sheng et al. Global fitting for high-accuracy multi-channel single-molecule localization[J]. Nature Communications, 13, 3133(2022).

    [41] ZHANG Zhengyang, KENNY S J, HAUSER M et al. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy[J]. Nature Methods, 12, 935-938(2015).

    [42] DONG Biqin, ALMASSALHA L, URBAN B E et al. Super-resolution spectroscopic microscopy via photon localization[J]. Nature Communications, 7, 12290(2016).

    [43] JEONG D, KIM D. Super-resolution fluorescence microscopy-based single-molecule spectroscopy[J]. Bulletin of the Korean Chemical Society, 43, 316-327(2022).

    [44] MOON S, YAN Rui, KENNY S J et al. Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes[J]. Journal of the American Chemical Society, 139, 10944-10947(2017).

    [45] MLODZIANOSKI M J, CURTHOYS N M, GUNEWARDENE M S et al. Super-resolution imaging of molecular emission spectra and single molecule spectral fluctuations[J]. PLOS ONE, 11, e0147506(2016).

    [46] HUANG Tao, PHELPS C, WANG Jing et al. Simultaneous multicolor single-molecule tracking with single-laser excitation via spectral imaging[J]. Biophysical Journal, 114, 301-310(2018).

    [47] ZHANG Yang, SONG K H, DONG Biqin et al. Multicolor super-resolution imaging using spectroscopic single-molecule localization microscopy with optimal spectral dispersion[J]. Applied Optics, 58, 2248-2255(2019).

    [48] CAI Zhen, ZHANG Yang, ZHANG Zheyuan et al. Super-resolution imaging of flat-mounted whole mouse cornea[J]. Experimental Eye Research, 205, 108499(2021).

    [49] SONG K H, ZHANG Yang, WANG Gaoxiang et al. Three-dimensional biplane spectroscopic single-molecule localization microscopy[J]. Optica, 6, 709(2019).

    [50] KIM G, CHUNG J, PARK H et al. Single-molecule sensing by grating-based spectrally resolved super-resolution microscopy[J]. Bulletin of the Korean Chemical Society, 42, 270-278(2021).

    [51] SONG K H, BRENNER B, YEO W H et al. Monolithic dual-wedge prism-based spectroscopic single-molecule localization microscopy[J]. Nanophotonics, 11, 1527-1535(2022).

    [52] DANYLCHUK D I, MOON S, XU Ke et al. Switchable solvatochromic probes for live‐cell super‐resolution imaging of plasma membrane organization[J]. Angewandte Chemie International Edition, 58, 14920-14924(2019).

    [53] CHUNG J, JEONG U, JEONG D et al. Development of a new approach for low-laser-power super-resolution fluorescence imaging[J]. Analytical Chemistry, American Chemical Society, 94, 618-627(2022).

    [54] SONG K H, ZHANG Yang, BRENNER B et al. Symmetrically dispersed spectroscopic single-molecule localization microscopy[J]. Light: Science & Applications, 9, 92(2020).

    [55] SMITH C, HUISMAN M, SIEMONS M et al. Simultaneous measurement of emission color and 3D position of single molecules[J]. Optics Express, 24, 4996-5013(2016).

    [56] SHECHTMAN Y, WEISS L E, BACKER A S et al. Multicolour localization microscopy by point-spread-function engineering[J]. Nature Photonics, 10, 590-594(2016).

    [57] SHECHTMAN Y, GUSTAVSSON A K, PETROV P N et al. Observation of live chromatin dynamics in cells via 3D localization microscopy using Tetrapod point spread functions[J]. Biomedical Optics Express, 8, 5735-5748(2017).

    [58] SIEMONS M, HULLEMAN C N, THORSEN R O et al. High precision wavefront control in point spread function engineering for single emitter localization[J]. Optics Express, 26, 8397-8416(2018).

    [59] LIU Xin, KUANG Cuifang, LIU Xu等. Research progress of computational microsco pyima gingbased on point spread function engineer[J]. Laser & Optoelectronics Progress, 58, 1811008(2021).

    [60] KIM T, MOON S, XU Ke. Information-rich localization microscopy through machine learning[J]. Nature Communications, 10, 1996(2019).

    [61] HERSHKO E, WEISS L E, MICHAELI T et al. Multicolor localization microscopy and point-spread-function engineering by deep learning[J]. Optics Express, 27, 6158-6183(2019).

    [62] NEHME E, FREEDMAN D, GORDON R et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning[J]. Nature Methods, 17, 734-740(2020).

    [63] NEHME E, FERDMAN B, WEISS L E et al. Learning optimal wavefront shaping for multi-channel imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 2179-2192(2021).

    [64] OPATOVSKI N, SHALEV EZRA Y, WEISS L E et al. Multiplexed PSF engineering for three-dimensional multicolor particle tracking[J]. Nano Letters, 21, 5888-5895(2021).

    [65] BARENTINE A E S, LIN Yu, LIU Miao et al. 3D multicolor nanoscopy at 10,000 cells a day[J]. bioRxiv, 606954(2019).

    [66] SAGE D, PHAM T A, BABCOCK H et al. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software[J]. Nature Methods, 16, 387-395(2019).

    [67] DERTINGER T, COLYER R, IYER G et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences, 106, 22287-22292(2009).

    Tools

    Get Citation

    Copy Citation Text

    Yuehan ZHAO, Xiang HAO. Advances in Multicolor Single-molecule Localization Microscopy(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851517

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for the 60th Anniversary of XIOPM of CAS, and the 50th Anniversary of the Acta Photonica Sinica Ⅱ

    Received: Jun. 3, 2022

    Accepted: Jul. 27, 2022

    Published Online: Oct. 25, 2022

    The Author Email:

    DOI:10.3788/gzxb20225108.0851517

    Topics