Acta Optica Sinica, Volume. 35, Issue 4, 406005(2015)
Fiber-Optic Humidity Sensing Based on Graphene
[1] [1] K S Novoselov, A K Geim, S V Morozov, et al.. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
[2] [2] K S Novoselov, Z Jiang, Y Zhang, et al.. Room-temperature Quantum Hall effect in graphene [J]. Science, 2007, 315(5817): 1379.
[3] [3] Y B Zhang, Y W Tan, H L Stormer, et al.. Experimental observation of the Quantum Hall effect and Berry′s phase in graphene [J]. Nature, 2005, 438(7065): 201-204.
[4] [4] K S Novoselov, E Mccann, S V Morozov, et al.. Unconventional Quantum Hall effect and Berry′s phase of 2p in bilayer graphene [J]. Nature Physics, 2006, 2(3): 177-180.
[5] [5] Z Jiang, Y Zhang, H L Stormer, et al.. Quantum Hall states near the charge-neutral Dirac point in graphene [J]. Phys Rev Lett, 2007, 99(10): 106802.
[6] [6] K S Novoselov, A K Geim, S V Morozov, et al.. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438(7065): 197-200.
[7] [7] S V Morozov, K S Novoselov, M I Katsnelson, et al.. Giant intrinsic carrier mobilities in graphene and its bilayer [J]. Phys Rev Lett, 2008, 100(1): 016602.
[8] [8] K I Bolotin, K J Sikes, Z Jiang, et al.. Ultrahigh electron mobility in suspended graphene [J]. Solid State Commun, 2008, 146(9-10): 351-355.
[9] [9] S A Mikhailov, K Ziegler. New electromagnetic mode in graphene [J]. Phys Rev Lett, 2007, 99(1): 016803.
[10] [10] M Jablan, H Buljan, M Soljacic. Plasmonics in graphene at infrared frequencies [J]. Phys Rev B, 2009, 80(24): 245435.
[11] [11] F H L Koppens, G E Chang, F J G de Abajo. Graphene plasmonics: A platform for strong light-matter interacting [J]. Nano Lett, 2011, 11(8): 3370-3377.
[12] [12] A Vakil, N Engheta. Transformation optics using graphene [J]. Science, 2011, 332(6035): 1291-1294.
[13] [13] F Schedin, A K Geim, S V Morozov, et al.. Detection of individual gas molecules adsorbed on graphene [J]. Nature Materials, 2007, 6(9): 652-655.
[14] [14] L A Mashat, K Shin, K K Zadeh, et al.. Graphene/Polyaniline nanocomposite for hydrogen sensing [J]. J Phys Chem C, 2010, 114(39): 16168-16173.
[15] [15] J T Robinson, F K Perkins, E S Snow, et al.. Reduced graphene oxide molecular sensors [J]. Nano Lett, 2008, 8(10): 3137-3140.
[16] [16] G H Lu, L E Ocola, J H Chen. Reduced graphene oxide for room- temperature gas sensors [J]. Nanotechnology, 2009, 20(44): 445502.
[17] [17] G H Lu, L E Ocola, J H Chen. Gas detection using low-temperature reduced graphene oxide sheets [J]. Appl Phys Lett, 2009, 94(8): 083111.
[18] [18] J D Fowler, M J Allen, V C Tung, et al.. Practical chemical sensors from chemically derived graphene [J]. ACS Nano, 2009, 3(2): 301-306.
[19] [19] H Y Jeong, D S Lee, H K Choi, et al.. Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films [J]. Appl Phys Lett, 2010, 96(21): 213105.
[20] [20] G S Kulkarni, K Reddy, Z H Zhong, et al.. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection [J]. Nature Communications, 2014, 5(4376): 1-7.
[21] [21] M C Chen, C L Hsu, T J Hsueh. Fabrication of humidity sensor based on bilayer graphene [J]. IEEE Electron Device Letters, 2014, 35(5): 590-592.
[22] [22] P G Su, C F Chiou. Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate [J]. Sensors and Actuators B, 2014, 200: 9-18.
[23] [23] D Z Zhang, J Tong, B K Xia. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly [J]. Sensors and Actuators B, 2014, 197: 66-72.
[24] [24] M Liu, X B Yin, E U Avila, et al.. A graphene-based broadband optical modulator [J]. Nature, 2011, 474(7349): 64-67.
[25] [25] S J Koester, M Li. High-speed waveguide-coupled graphene-on-graphene optical modulators [J]. Appl Phys Lett, 2012, 100(17): 171107.
[26] [26] W Li, B G Chen, C Meng, et al.. Ultrafast all-optical graphene modulator [J]. Nano Letters, 2014, 14(2): 955-959.
[27] [27] Q L Bao, H Zhang, B Wang, et al.. Broadband graphene polarizer [J]. Nature Photonics, 2011, 5(7): 411-415.
[28] [28] J T Kim, C G Choi. Graphene-based polymer waveguide polarizer [J]. Opt Express, 2012, 20(4): 3556-3562.
[29] [29] G W Hanson. Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene [J]. J Appl Phys, 2008, 103(6): 064302.
[30] [30] Liao Guozhen, Zhang Jun, Cai Xiang, et al.. All-fiber temperature sensor based on graphene [J]. Acta Optica Sinica, 2013, 33(7): 0706004.
[31] [31] A Gaston, F Perez, J Sevilla. Optical fiber relative-humidity sensor with polyvinyl alcohol film [J]. Appl Opt, 2004, 43(2): 4127-4132.
[32] [32] Han Yuqi, Chen Zhe, Yu Jianhui, et al.. Side-polished fiber sensing for measurement of nematic liquid crystal orientation [J]. Acta Optica Sinica, 2014, 34(2): 0206006.
[33] [33] Chen Xiaolong, Luo Yunhan, Xu Mengyun, et al.. Refractive index and temperature sensing based on surface plsmon resonance fabricated on a side-polished fiber [J]. Acta Optica Sinica, 2014, 34(2): 0206005.
[34] [34] W S Hummers, Jr R E Offeman. Preparation of graphitic oxide [J]. J Am Chem Soc, 1958, 80(6): 1339.
[35] [35] X Cai, S Z Tan, A G Xie, et al.. Conductive methyl blue- functionalized reduced graphene oxide with excellent stability and solubility in water [J]. Materials Research Bulletin, 2011, 46(12): 2353-2358.
[36] [36] Jiang Peifan, Chen Zhe, Zeng Yingxin, et al.. Optical propagation characteristics of side- polished fibers [J]. Semiconductor Optoelectronics, 2006, 27(5): 578-581.
[37] [37] A C Ferrari, J C Meyer, V Scardaci, et al.. Raman spectrum of graphene and graphene layers [J]. Phys Rev Lett, 2006, 97(18): 187401.
[38] [38] C Bariain, I R Matias, F I Arregui, et al.. Optical fiber humidity sensor based on a tapered fiber coated with agarose gel [J]. Sensors and Actuators B, 2000, 69(1-2): 127-131.
[39] [39] B D Gupta, Ratnanjali. Novel probe for a fiber optic humidity sensor [J]. Sensors and Actuators B, 2001, 80(2): 132-135.
[40] [40] S K Khijwania, K L Srinivasan, J P Singh. An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity [J]. Sensors and Actuators B, 2005, 104(2): 217-222.
[41] [41] L Xia, L C Li, W Li, et al.. Novel optical fiber humidity sensor based on a no-core fiber structure [J]. Sensors and Actuators A, 2013, 190: 1-5.
[42] [42] J M Corres, J Bravo, I R Matias. Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms [J]. IEEE Photon Technol Lett, 2006, 18(8): 935-937.
Get Citation
Copy Citation Text
Xiao Yi, Zhang Jun, Cai Xiang, Tan Shaozao, Chen Zhe, Yu Jianhui, Lu Huihui, Liao Guozhen, Li Shiping, Tang Jieyuan, Luo Yunhan. Fiber-Optic Humidity Sensing Based on Graphene[J]. Acta Optica Sinica, 2015, 35(4): 406005
Category: Fiber Optics and Optical Communications
Received: Nov. 10, 2014
Accepted: --
Published Online: Apr. 3, 2015
The Author Email: Yi Xiao (xiaoy109@sina.com)