Bulletin of the Chinese Ceramic Society, Volume. 43, Issue 9, 3399(2024)

Structure and Chemical Durability of Actinide Nuclides Solidified by High-Entropy Pyrochlore (La1/6Pr1/6Nd1/6Sm1/6Eu1/6Gd1/6)2Zr2O7

DU Zhanyuan, ZHU Yongchang, CUI Zhu, JIAO Yunjie, DONG Xuanjiang, WANG Dongyu, YANG Debo, and WANG Hua*
Author Affiliations
  • [in Chinese]
  • show less
    References(42)

    [2] [2] HYATT N C, OJOVAN M I. Special issue: materials for nuclear waste immobilization[J]. Materials, 2019, 12(21): 3611.

    [3] [3] OJOVAN M I, STEINMETZ H J. Approaches to disposal of nuclear waste[J]. Energies, 2022, 15(20): 7804.

    [4] [4] ABU-KHADER M M. Recent advances in nuclear power: a review[J]. Progress in Nuclear Energy, 2009, 51(2): 225-235.

    [6] [6] YANG K, WANG Y C, LEI P H, et al. Chemical durability and surface alteration of lanthanide zirconates (A2Zr2O7: a=La-Yb)[J]. Journal of the European Ceramic Society, 2021, 41(12): 6018-6028.

    [7] [7] SINGH B K, HAFEEZ M A, KIM H, et al. Inorganic waste forms for efficient immobilization of radionuclides[J]. ACS ES&T Engineering, 2021, 1(8): 1149-1170.

    [8] [8] SENGUPTA P. A review on immobilization of phosphate containing high level nuclear wastes within glass matrix: present status and future challenges[J]. Journal of Hazardous Materials, 2012, 235/236: 17-28.

    [9] [9] JAFAR M, SENGUPTA P, ACHARY S N, et al. Phase evolution and microstructural studies in CaZrTi2O7 (zirconolite)-Sm2Ti2O7 (pyrochlore) system[J]. Journal of the European Ceramic Society, 2014, 34(16): 4373-4381.

    [10] [10] EWING R C, WEBER W J, LIAN J. Nuclear waste disposal—pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides[J]. Journal of Applied Physics, 2004, 95(11): 5949-5971.

    [11] [11] LIAN J, ZU X T, KUTTY K V G, et al. Ion-irradiation-induced amorphization of La2Zr2O7 pyrochlore[J]. Physical Review B-Condensed Matter and Materials Physics, 2002, 66(5): 541081-541085.

    [12] [12] WILLIFORD R E, WEBER W J, DEVANATHAN R, et al. Effects of cation disorder on oxygen vacancy migration in Gd2Ti2O7[J]. Journal of Electroceramics, 1999, 3(4): 409-424.

    [13] [13] HEVESY G, LEVI H. Action of slow neutrons on rare earth elements[J]. Nature, 1936, 137(3457): 185-185.

    [14] [14] KHOKHLOV V F, YASHKIN P N, SILIN D I, et al. Neutron capture therapy with Gd-DTPA in tumor-bearing rats[M]//Cancer Neutron Capture Therapy. Boston, MA: Springer, 1996: 865-869.

    [15] [15] XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: present status, challenges, and a look forward[J]. Journal of Advanced Ceramics, 2021, 10(3): 385-441.

    [16] [16] YE Y F, WANG Q, LU J, et al. High-entropy alloy: challenges and prospects[J]. Materials Today, 2016, 19(6): 349-362.

    [17] [17] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nature Reviews Materials, 2020, 5(4): 295-309.

    [18] [18] CONNELLY A J, TRAVIS K P, HAND R J, et al. Composition-structure relationships in simplified nuclear waste glasses: mixed alkali borosilicate glasses[J]. Journal of the American Ceramic Society, 2011, 94(1): 151-159.

    [19] [19] WU J X, ZHANG M, LI Z Q, et al. High-entropy (Sm0.2Eu0.2Gd0.2Dy0.2Er0.2)2Hf2O7 ceramic with superb resistance to radiation-induced amorphization[J]. Journal of Materials Science & Technology, 2023, 155: 1-9.

    [20] [20] KHOLGHY M, KHARATYAN S, EDRIS H. SHS/PHIP of ceramic composites using ilmenite concentrate[J]. Journal of Alloys and Compounds, 2010, 502(2): 491-494.

    [21] [21] WANG J, WANG J X, ZHANG Y B, et al. Order-disorder phase structure, microstructure and aqueous durability of (Gd, Sm)2(Zr, Ce)2O7 ceramics for immobilizing actinides[J]. Ceramics International, 2019, 45(14): 17898-17904.

    [22] [22] LU X R, FAN L, SHU X Y, et al. Phase evolution and chemical durability of Co-doped Gd2Zr2O7 ceramics for nuclear waste forms[J]. Ceramics International, 2015, 41(5): 6344-6349.

    [23] [23] PENG L, ZHANG K B, YIN D, et al. Self-propagating synthesis, mechanical property and aqueous durability of Gd2Ti2O7 pyrochlore[J]. Ceramics International, 2016, 42(16): 18907-18913.

    [24] [24] SHU X Y, LU X R, FAN L, et al. Design and fabrication of Gd2Zr2O7-based waste forms for U3O8 immobilization in high capacity[J]. Journal of Materials Science, 2016, 51(11): 5281-5289.

    [25] [25] JAFAR M, PHAPALE S B, MANDAL B P, et al. Effect of temperature on phase evolution in Gd2Zr2O7: a potential matrix for nuclear waste immobilization[J]. Journal of Alloys and Compounds, 2021, 867: 159032.

    [26] [26] SHUKLA R, VASUNDHARA K, KRISHNA P S R, et al. High temperature structural and thermal expansion behavior of pyrochlore-type praseodymium zirconate[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15672-15678.

    [27] [27] WANG Z J, ZHOU G H, QIN X P, et al. Fabrication of LaGdZr2O7 transparent ceramic[J]. Journal of the European Ceramic Society, 2013, 33(4): 643-646.

    [28] [28] LUMPKIN G R, PRUNEDA M, RIOS S, et al. Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds[J]. Journal of Solid State Chemistry, 2007, 180(4): 1512-1518.

    [29] [29] CHEN S Z, LIU X D, SHU X Y, et al. Rapid synthesis and chemical durability of Gd2Zr2-Ce O7 via SPS for nuclear waste forms[J]. Ceramics International, 2018, 44(16): 20306-20310.

    [30] [30] MA,CZKA M, HANUZA J, HERMANOWICZ K, et al. Temperature-dependent Raman scattering studies of the geometrically frustrated pyrochlores Dy2Ti2O7, Gd2Ti2O7 and Er2Ti2O7[J]. Journal of Raman Spectroscopy, 2008, 39(4): 537-544.

    [31] [31] VANDENBORRE M T, HUSSON E, CHATRY J P, et al. Rare-earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields[J]. Journal of Raman Spectroscopy, 1983, 14(2): 63-71.

    [32] [32] KONG L G, KARATCHEVTSEVA I, GREGG D J, et al. Gd2Zr2O7 and Nd2Zr2O7 pyrochlore prepared by aqueous chemical synthesis[J]. Journal of the European Ceramic Society, 2013, 33(15/16): 3273-3285.

    [33] [33] HASANZADEH E M, NAJI H, MARJERRISON C A, et al. Microstructural characterization and phase analysis of new pyrochlore-type mixed metal oxides RESmTi2O7 (RE=Gd, Er) by X-ray powder diffraction using Rietveld refinement method and spectroscopic studies[J]. Ceramics International, 2022, 48(10): 13651-13658.

    [34] [34] JANA Y M, HALDER P, ALI BISWAS A, et al. FT-IR and Raman vibrational spectroscopic studies of R2FeSbO7 (R3+=Y, Dy, Gd, Bi) pyrochlores[J]. Vibrational Spectroscopy, 2016, 84: 74-82.

    [35] [35] WUENSCH B J, EBERMAN K W. Order-disorder phenomena in A2B2O7 pyrochlore oxides[J]. Journal of Metals, 2000, 52(7): 19-21.

    [36] [36] BURROUGHS P, HAMNETT A, ORCHARD A F, et al. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium[J]. Journal of the Chemical Society, Dalton Transactions, 1976(17): 1686-1698.

    [37] [37] ZHONG F L, SHI L Q, ZHAO J W, et al. Ce incorporated pyrochlore Pr2Zr2O7 solid electrolytes for enhanced mild-temperature NO2 sensing[J]. Ceramics International, 2017, 43(15): 11799-11806.

    [38] [38] LIAO X, ZHANG Y, HILL M, et al. Highly efficient Ni/CeO2 catalyst for the liquid phase hydrogenation of maleic anhydride[J]. Applied Catalysis A: General, 2014, 488: 256-264.

    [39] [39] ZHANG F, XIE Y X, ZHANG H M, et al. New simultaneously doped pyrochlore compounds (Ca1-xCex)2(ZrxNb1-x)2O7 negative temperature coefficient ceramics[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(8): 10339-10348.

    [40] [40] WANG L L, LI J B, XIE H, et al. Solubility, structure transition and chemical durability of Th-doped Nd2Zr2O7 pyrochlore[J]. Progress in Nuclear Energy, 2021, 137: 103774.

    [41] [41] YANG J X, TAN L, JI P C, et al. Rapid preparation of Gd2Zr2-xCexO7 waste forms by flash sintering and their chemical durability[J]. Journal of the European Ceramic Society, 2023, 43(11): 4950-4957.

    [42] [42] WANG J, WANG J X, ZHANG Y B, et al. Flux synthesis and chemical stability of Nd and Ce Co-doped (Gd1-xNdx)2(Zr1-xCex)2O7 (0≤x≤1) pyrochlore ceramics for nuclear waste forms[J]. Ceramics International, 2017, 43(18): 17064-17070.

    [43] [43] ZHOU L, LI F, LIU J X, et al. High-entropy A2B2O7-type oxide ceramics: a potential immobilising matrix for high-level radioactive waste[J]. Journal of Hazardous Materials, 2021, 415: 125596.

    [44] [44] ZHAO Z F, XIANG H M, DAI F Z, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate[J]. Journal of Materials Science & Technology, 2019, 35(11): 2647-2651.

    Tools

    Get Citation

    Copy Citation Text

    DU Zhanyuan, ZHU Yongchang, CUI Zhu, JIAO Yunjie, DONG Xuanjiang, WANG Dongyu, YANG Debo, WANG Hua. Structure and Chemical Durability of Actinide Nuclides Solidified by High-Entropy Pyrochlore (La1/6Pr1/6Nd1/6Sm1/6Eu1/6Gd1/6)2Zr2O7[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3399

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 29, 2024

    Accepted: --

    Published Online: Nov. 5, 2024

    The Author Email: WANG Hua (wanghua@cbma.com.cn)

    DOI:

    CSTR:32186.14.

    Topics