Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1844(2025)

Large Language Models Extract Synthesis Information of Lithium-ion Battery Solid-state Electrolytes from Literature

WEI Shihao, LI Shuyuan, WANG Yaxin, and SUN Shaorui
Author Affiliations
  • College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
  • show less
    References(28)

    [1] [1] XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nat Commun, 2020, 11(1): 2499.

    [2] [2] YU X Q, CHEN R S, GAN L Y, et al. Battery safety: From lithium-ion to solid-state batteries[J]. Engineering, 2023, 21: 9–14.

    [3] [3] ZHOU G, HUANG Q, ZHANG Q, et al. Thermal insulation phase-change hydrogel with enhanced mechanical properties for inhibiting thermal runaway propagation in lithium-ion battery module[J]. J Energy Storage, 2024, 102: 114102.

    [4] [4] YANG Z, YAN Y, PAK U. Thermal reliability assessment and sensitivity analysis of 18, 650 cylindrical lithium-ion battery[J]. J Energy Storage, 2023, 59: 106504.

    [6] [6] YANG Q F, LI C L. Li metal batteries and solid state batteries benefiting from halogen-based strategies[J]. Energy Storage Mater, 2018, 14: 100–117.

    [7] [7] ZHANG X Y, CHENG S C, FU C K, et al. Advancements and challenges in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Nano Micro Lett, 2024, 17(1): 2.

    [8] [8] CHEN X C, LIU X M, SAMUTHIRA PANDIAN A, et al. Determining and minimizing resistance for ion transport at the polymer/ceramic electrolyte interface[J]. ACS Energy Lett, 2019, 4(5): 1080–1085.

    [9] [9] LUO W, GONG Y H, ZHU Y Z, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte[J]. J Am Chem Soc, 2016, 138(37): 12258–12262.

    [10] [10] HARRY K J, LIAO X X, PARKINSON D Y, et al. Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane[J]. J Electrochem Soc, 2015, 162(14): A2699–A2706.

    [11] [11] KIM J, MOK D H, KIM H, et al. Accelerating the search for new solid electrolytes: Exploring vast chemical space with machine learning- enabled computational calculations[J]. ACS Appl Mater Interfaces, 2023.

    [12] [12] HAWIZY L, JESSOP D M, ADAMS N, et al. ChemicalTagger: A tool for semantic text-mining in chemistry[J]. J Cheminform, 2011, 3(1): 17.

    [13] [13] SWAIN M C, COLE J M. ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature[J]. J Chem Inf Model, 2016, 56(10): 1894–1904.

    [14] [14] MAVRAI J, COURT C J, ISAZAWA T, et al. ChemDataExtractor 2.0: Autopopulated ontologies for materials science[J]. J Chem Inf Model, 2021, 61(9): 4280–4289.

    [15] [15] LIU Y, DING L, YANG Z W, et al. Domain knowledge discovery from abstracts of scientific literature on Nickel-based single crystal superalloys[J]. Sci China Technol Sci, 2023, 66(6): 1815–1830.

    [16] [16] WANG W R, JIANG X, TIAN S H, et al. Automated pipeline for superalloy data by text mining[J]. NPJ Comput Mater, 2022, 8: 9.

    [17] [17] YAN R E, JIANG X, WANG W R, et al. Materials information extractionviaautomatically generated corpus[J]. Sci Data, 2022, 9(1): 401.

    [18] [18] VAUCHER A C, ZIPOLI F, GELUYKENS J, et al. Automated extraction of chemical synthesis actions from experimental procedures[J]. Nat Commun, 2020, 11(1): 3601.

    [19] [19] GUPTA T, ZAKI M, ANOOP KRISHNAN N M, et al. MatSciBERT: A materials domain language model for text mining and information extraction[J]. NPJ Comput Mater, 2022, 8: 102.

    [20] [20] GUO J, SANTIAGO IBANEZ-LOPEZ A, GAO H Y, et al. Automated chemical reaction extraction from scientific literature[J]. J Chem Inf Model, 2022, 62(9): 2035–2045.

    [21] [21] WANG Z R, CRUSE K, FEI Y X, et al. ULSA: Unified language of synthesis actions for the representation of inorganic synthesis protocols[J]. Digit Discov, 2022, 1(3): 313–324.

    [22] [22] CRUSE K, TREWARTHA A, LEE S, et al. Text-mined dataset of gold nanoparticle synthesis procedures, morphologies, and size entities[J]. Sci Data, 2022, 9(1): 234.

    [23] [23] Zheng Z, Rampal N, Inizan T J, et al. Large language models for reticular chemistry[J]. Nat Rev Mater, 2025, https://doi.org/10.1038/s41578- 025-00772-8.

    [24] [24] HONG Z J. ChatGPT for computational materials science: A perspective[J]. Energy Mater Adv, 2023, 4: 26.

    [25] [25] Zheng Z, Zhang O, Borgs C, et al. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis[J]. J Am Chem Soc, 2023, 145(32): 18048–18062.

    [26] [26] BOIKO D A, MACKNIGHT R, KLINE B, et al. Autonomous chemical research with large language models[J]. Nature, 2023, 624(7992): 570–578.

    [27] [27] DAGDELEN J, DUNN A, LEE S, et al. Structured information extraction from scientific text with large language models[J]. Nat Commun, 2024, 15(1): 1418.

    [28] [28] ANSARI M, MOOSAVI S M. Agent-based learning of materials datasets from the scientific literature[J]. Digit Discov, 2024, 3(12): 2607–2617.

    [30] [30] Li S, Zhang Y, Fang Z, et al. Extracting the Synthetic Route of Pd-Based Catalysts in Methanol Steam Reforming from the Scientific Literature[J]. J Chem Inf Model, 2023, 63(20):6249–6260.

    Tools

    Get Citation

    Copy Citation Text

    WEI Shihao, LI Shuyuan, WANG Yaxin, SUN Shaorui. Large Language Models Extract Synthesis Information of Lithium-ion Battery Solid-state Electrolytes from Literature[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1844

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 2, 2025

    Accepted: Aug. 12, 2025

    Published Online: Aug. 12, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240845

    Topics