Chinese Journal of Lasers, Volume. 47, Issue 5, 0500007(2020)

High-Precision Timing Synchronization Techniques in Large-Scale Scientific Facilities

Ming Xin*
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(8)
    Principle and measurement error of BOC[35]. (a) Principle of single-crystal BOC; (b) typical BOC timing characterization curves; (c) three envelope shapes of input pulse E1; (d) seven energy distributions of input pulse E2 for different COG change; (e) calculated BOC measurement error for different COG change of E2
    Experimental setup for laser timing jitter characterization and synchronization based on BOC[35]
    BOC noise floors at different input average powers[35]
    Schematic of free-space-coupled balanced optical-microwave phase detector[35]
    Experimental setup for optical fiber timing link stabilization [35]
    Timing synchronization of XFEL[35]
    • Table 1. Performance comparison of several optical-microwave phase detectors

      View table

      Table 1. Performance comparison of several optical-microwave phase detectors

      ReferenceAM-PM noiseBalanced detectionComplexityDifficulty for integration
      [54-56]NoNoRelatively highEasy
      [57-58]YesYesModerateDifficult
      [59]YesYesRelatively highEasy
      [60]YesYesLowEasy
    • Table 2. Performance comparison of large-scale timing synchronization systems

      View table

      Table 2. Performance comparison of large-scale timing synchronization systems

      ReferenceFunctionCharacteristicDistance /mContinuousoperationtime /hTimingdrift /fs
      [74]Link stabilizationLaboratory withatmospheric turbulence76.21302.6
      [75]Link stabilizationOutdoor withatmospheric turbulence521.39280
      Freespace[76]Link stabilizationOutdoor withatmospheric turbulence200032.5
      [78]Optical-optical synchronizationOutdoor withatmospheric turbulence400048~6
      [79]Optical-microwavesynchronizationOutdoor withatmospheric turbulence40008~4
      [85]Link stabilizationCW modulatedby microwave22006019.4
      [51]Link stabilizationPulse+SMF+BOC300726.4
      [88]Link stabilizationPulse+PMF+BOC12003840.6
      [89]Link stabilizationPulse+SMF+BOC+XFEL in field80013.52.3
      [90]Link stabilizationPulse+PMF+all fibercoupled components35002003.3
      [91]Link stabilizationPulse+PMF+integrated BOC1200280.75
      Fiber[53]Link stabilizationPulse+PMF+BOC+power compensation4700520.2
      [93]Optical-opticalsynchronizationPulse+PMF+BOC3500402.3
      [53]Optical-opticalsynchronizationPulse+PMF+BOC+power compensation3500440.094
      [96]Multi-color optical-optical synchronizationPulse+PMF+two-color BOC4700400.6
      [94]Microwave-microwavesynchronizationPulse+SMF+optical-microwave phase detector23009236
      [96]Optical-optical &microwave synchronizationPulse+PMF+BOC+BOMPD+power compensation4700180.67
      [97-98]Optical-microwave &microwave synchronizationPulse+PMF+BOC+BOMPD47002.51.76
    Tools

    Get Citation

    Copy Citation Text

    Ming Xin. High-Precision Timing Synchronization Techniques in Large-Scale Scientific Facilities[J]. Chinese Journal of Lasers, 2020, 47(5): 0500007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Jan. 6, 2020

    Accepted: Mar. 16, 2020

    Published Online: May. 12, 2020

    The Author Email: Xin Ming (xinm@tju.edu.cn)

    DOI:10.3788/CJL202047.0500007

    Topics