Laser Technology, Volume. 45, Issue 3, 271(2021)
Review of high repetition-rate mid-infrared lasers for photoelectric countermeasures
[1] [1] YANG A F, ZHANG J, LI G, et al. Technology of MWIR laser in directed infrared countermeasure systems[J]. Journal of Applied Optics, 2015, 36(1): 119-125(in Chinese).
[2] [2] WU J. Research of the key technology of coherent range and range-rate detection ladar with large dynamic range and high-repetition-rate[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2015: 1-164(in Chinese).
[3] [3] TIAN Y Zh, ZHAO Sh, GUO J. Analysis of non-cooperative target photon counting laser ranging[J]. Acta Optica Sinica, 2011, 31(5): 0514002(in Chinese).
[4] [4] ADAMS J J, BIBEAU C, PAGE R H, et al. 4.0-4.5μm lasing of Fe∶ZnSe below 180K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23): 1720-1722.
[5] [5] KERNAL J, FEDOROV V V, GALLIAN A, et al. 3.9-4.8μm gain-switched lasing of Fe∶ZnSe at room temperature[J]. Optics Express, 2005, 13(26): 10608-10615.
[6] [6] AKIMOV V A, VORONOV A A, KOZLOVSKII V I, et al. Efficient lasing in a Fe2+∶ZnSe crystal at room temperature[J]. Quantum Electronics, 2006, 36(4): 299-301.
[7] [7] EVANS J W, BERRY P A, SCHEPLER K L. A passively Q-switched, CW-pumped Fe∶ZnSe laser[J]. IEEE Journal of Quantum Electronics, 2014, 50(3): 204-209.
[8] [8] MARTYSHKIN D V, FEDOROV V V, MIROV M, et al. High average power (35W) pulsed Fe∶ZnSe laser tunable over 3.8-4.2μm [J/OL].(2015-05-10)[2020-10-21].https://www.osapublishing.org/abstract.cfm?uri=cleo_si-2015-SF1F.2.
[9] [9] XIA Sh X, ZHANG Y J, LI X W, et al. Optical absorption and laser output performance of Fe2+∶ZnSe laser crystal[J]. Laser & Infrared, 2014, 44(9): 1000-1002(in Chinese).
[10] [10] YAO B Q, XIA Sh X, YU K K, et al. Mid-infrared laser output of Fe2+∶ZnSe crystal[J]. Chinese Journal of Lasers, 2015, 42(1): 0119001(in Chinese).
[11] [11] KE Ch J, WANG D L,WANG X Y, et al. 15mJ mid-infrared laser output of Fe2+∶ZnSe crystal at room temperature[J]. Chinese Journal of Lasers, 2015, 42(2): 0219004(in Chinese).
[12] [12] FRERICHS C H, TAUERMANN T. Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7μm[J]. Electronics Letters, 1994, 30(9): 706-707.
[13] [13] COLEMAN D J, KING T A, KO D, et al. Q-switched operation of a 2.7μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser[J]. Optics Communications, 2004, 236(4): 379-385.
[14] [14] TOKITA S, MURAKAMI M, SHIMIZU S, et al. 12W Q-switched Er∶ZBLAN fiber laser at 2.8μm[J]. Optics Letters, 2011, 36(15): 2812-2814.
[15] [15] HU T, HUDSON D D, JACKSON S D. Actively Q-switched 2.9μm Ho3+Pr3+-doped fluoride fiber laser[J]. Optics Letters, 2012, 37(11): 2145-2147.
[16] [16] LAMRINI S, SCHOLLE K, SCHAFER M, et al. High-energy Q-switched Er∶ZBLAN fibre laser at 2.79μm[C]//2015 European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference. Washington DC,USA: Optical Society of America, 2015:CJ_7_2.
[17] [17] LI J, HU T, JACKSON S D. Dual wavelength Q-switched cascade laser[J]. Optics Letters, 2012, 37(12): 2208-2210.
[18] [18] LI J, YANG Y, HUDSON D, et al. A tunable Q-switched Ho3+-doped fluoride fiber laser[J]. Laser Physics Letters, 2013, 10(4): 045107.
[19] [19] FRERICHS C, UNRAU U B. Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7 μm[J]. Optical Fiber Technology, 1996, 2(4): 358-366.
[20] [20] WEI Ch, ZHU X, NORWOOD R A, et al. Passively Q-switched 2.8μm nanosecond fiber laser[J]. IEEE Photonics Technology Letters, 2012, 24(19): 1741-1744.
[21] [21] WEI Ch, ZHU X, WANG F, et al. Graphene Q-switched 2.78μm Er3+-doped fluoride fiber laser[J]. Optics Letters, 2013, 38(17): 3233-3236.
[22] [22] ZHU G, ZHU X, BALAKRISHNAN K, et al. Fe2+∶ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3μm[J]. Optical Materials Express, 2013, 3(9): 1365-1377.
[23] [23] LI J, LUO H, HE Y, et al. Semiconductor saturable absorber mirror passively Q-switched 2.97μm fluoride fiber laser[J]. Proceedings of the SPIE, 2014, 9135: 913504.
[24] [24] LI J, LUO H, WANG L, et al. 3μm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Optics Letters, 2015, 40(15): 3659-3662.
[25] [25] LI J, LUO H, WANG L, et al. Tunable Fe2+∶ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3μm[J]. Optics Express, 2015, 23(17): 22362-22370.
[26] [26] QIN Zh, XIE G, ZHANG H, et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8μm[J]. Optics Express, 2015, 23(19): 24713-24718.
[27] [27] ZHANG T, FENG G, ZHANG H, et al. 2.78μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+∶ZnSe film[J]. Laser Physics Letters, 2016, 13(7): 075102.
[28] [28] LIU J, HUANG B, TANG P H, et al. Volume Bragg grating based tunable continuous-wave and Bi2Te3 Q-switched Er3+∶ZBLAN fiber laser[C]//Conference on Lasers and Electro-Optics, OSA Technical Digest (online). Washington D C,USA: Optical Society of America, 2016: AW1K.7.
[29] [29] SHEN Y, WANG Y, LUAN K, et al. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 2016, 6(1): 26659.
[30] [30] WEI CH, LUO H, ZHANG H, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 2016, 13(10): 105108.
[31] [31] LAI X, LI J, LUO H, et al. High power passively Q-switched Er3+-doped ZBLAN fiber laser at 2.8μm based on a semiconductor saturable absorber mirror[J]. Laser Physics Letters, 2018, 15(8): 085109.
[32] [32] WEI Ch, ZHU X, NORWOOD R A, et al. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8μm[J]. Optics Letters, 2012, 37(18): 3849-3851.
[33] [33] HABOUCHA A, FORTIN V, BERNIER M, et al. Fiber Bragg grating stabilization of a passively mode-locked 2.8μm Er3+∶ fluoride glass fiber laser[J]. Optics Letters, 2014, 39(11): 3294-3297.
[34] [34] DUVAL S, BERNIER M, FORTIN V, et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2015, 2(7): 623-626.
[35] [35] HU T, JACKSON S D, HUDSON D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 2015, 40(18): 4226-4228.
[36] [36] ZHU G, ZHU X, WANG F, et al. Graphene mode-locked fiber laser at 2.8μm[J]. IEEE Photonics Technology Letters, 2015, 28(1): 7-10.
[37] [37] LI J, HUDSON D, LIU Y, et al. Efficient 2.87μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 2012, 37(18): 3747-3749.
[38] [38] YIN K, JIANG T, ZHENG X, et al. Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber [J/OL]. (2015-05-23) [2020-10-21]. https://arxiv.org/abs/1505.06322.
[39] [39] TANG P, QIN ZH, LIU J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8μm[J]. Optics Letters, 2015, 40(21): 4855-4858.
[40] [40] QIN Zh, XIE G, ZHAO Ch, et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 2016, 41(1): 56-59.
[41] [41] QIN Zh, HAI T, XIE G, et al. Black phosphorus Q-switched and mode-locked mid-infrared Er∶ZBLAN fiber laser at 3.5μm wavelength[J]. Optics Express, 2018, 26(7): 8224-8231.
[42] [42] KOKABEE O, ESTEBAN-MARTIN A, EBRAHIM-ZADEH M. Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator[J]. Optics Letters, 2010, 35(19): 3210-3212.
[43] [43] HARDY B, BERROU A, GUILBAUD S, et al. Compact, single-frequency, doubly resonant optical parametric oscillator pumped in an achromatic phase-adapted double-pass geometry[J]. Optics Letters, 2011, 36(5): 678-680.
[44] [44] LIN D, ALAM S, SHEN Y, et al. An all-fiber PM MOPA pumped high-power OPO at 3.82μm based on large aperture PPMgLN[J]. Proceedings of the SPIE, 2012, 8237: 82371K.
[45] [45] KIMMELMA O, KUMAR S C, ESTEBAN-MARTIN A, et al. Multi-gigahertz picosecond optical parametric oscillator pumped by 80MHz Yb-fiber laser[J]. Optics Letters, 2013, 38(22): 4550-4553.
[46] [46] RAMAIAH-BADARLA V, KUMAR S C, EBRAHIM-ZADEH M. Fiber-laser-pumped, dual-wavelength, picosecond optical parametric oscillator[J]. Optics Letters, 2014, 39(9): 2739-2742.
[47] [47] XU L, CHAN H, ALAM S, et al. Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity[J]. Optics Letters, 2015, 40(14): 3288-3291.
[48] [48] RIGAUD P, VAN DE WALLE A, HANNA M, et al. Supercontinuum-seeded few-cycle mid-infrared OPCPA system[J]. Optics Express, 2016, 24(23): 26494-26502.
[49] [49] MURRAY R T, RUNCORN T H, GUHA S, et al. High average power parametric wavelength conversion at 3.31-3.48μm in MgO∶PPLN[J]. Optics Express, 2017, 25(6): 6421-6430.
[50] [50] XIA L, RUAN S, SU H. High-power widely tunable singly resonant optical parametric oscillator based on PPLN or MgO-doped PPLN[J]. Proceedings of the SPIE, 2009, 7276: 72760G.
[51] [51] PENG Y, WANG W, WEI X, et al. High-efficiency mid-infrared optical parametric oscillator based on PPMgO∶CLN[J]. Optics Letters, 2009, 34(19): 2897-2899.
[52] [52] LIU J, LIU Q, YAN X, et al. High repetition frequency PPMgOLN mid-infrared optical parametric oscillator[J]. Laser Physics Letters, 2010, 7(9): 630-633.
[53] [53] WU B, KONG J, SHEN Y. High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2W at 3.82μm[J]. Optics Letters, 2010, 35(8): 1118-1120.
[54] [54] XU L, ZHANG Sh, CHEN W. Tm∶YLF laser-pumped periodically poled MgO-doped congruent LiNbO3 crystal optical parametric oscillators[J]. Optics Letters, 2012, 37(4): 743-745.
[55] [55] PENG Y F, WEI X B, LI D M, et al. High-power mid-infrared tunable optical parametric oscillator based on 3mm-thick PPMgCLN[J]. Laser Physics, 2012, 22(1): 87-90.
[56] [56] LIU Sh, WANG Zh, ZHANG B, et al. Wildly tunable, high-efficiency MgO∶PPLN mid-IR optical parametric oscillator pumped by a Yb-fiber laser[J]. Chinese Physics Letters, 2014, 31(2): 024204.
[57] [57] LIU J, TANG P, CHEN Y, et al. Highly efficient tunable mid-infrared optical parametric oscillator pumped by a wavelength locked, Q-switched Er∶YAG laser[J]. Optics Express, 2015, 23(16): 20812-20819.
[58] [58] LI H, LIU Z, ZHENG J, et al. High power mid-infrared MgO∶PPLN optical parametric oscillator[J]. Optics & Optoelectronic Technology, 2015, 13(1): 64-67(in Chinese).
[59] [59] LIPPERT E, FONNUM H, ARISHOLM G, et al. A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator[J]. Optics Express, 2010, 18(25): 26475-26483.
[60] [60] HEMMING A, RICHARDS J, DAVIDSON A, et al. 99W mid-IR operation of a ZGP OPO at 25% duty cycle[J]. Optics Express, 2013, 21(8): 10062-10069.
[61] [61] GEBHARDT M, GAIDA C, KADWANI P, et al. High peak-power mid-infrared ZnGeP2 optical parametric oscillator pumped by a Tm∶fiber master oscillator power amplifier system[J]. Optics Letters, 2014, 39(5): 1212-1215.
[62] [62] KIELECK C, BERROU A, DONELAN B, et al. 6.5 W ZnGeP2 OPO directly pumped by a Q-switched Tm3+-doped single-oscillator fiber laser[J]. Optics Letters, 2015, 40(6): 1101-1104.
[63] [63] PENG Y, WEI X, WANG W. Mid-infrared optical parametric oscillator based on ZnGeP2 pumped by 2μm laser[J]. Chinese Optics Letters, 2011, 9(6): 061403.
[64] [64] YAO B, SHEN Y, DUAN X, et al. A 41W ZnGeP2 optical parametric oscillator pumped by a Q-switched Ho∶YAG laser[J]. Optics Letters, 2014, 39(23): 6589-6592.
[65] [65] SHEN Y, YAO B, CUI Zh, et al. A ring ZnGeP2 optical parametric oscillator pumped by a Ho∶LuAG laser[J]. Applied Physics, 2014, B117(1): 127-130.
[66] [66] HAN L, YUAN L G, CHEN G, et al. 26W mid-infrared solid-state laser[J]. Chinese Journal of Lasers, 2015, 42(3): 0302004(in Chinese).
[67] [67] DUAN X, LI L, SHEN Y, et al. Efficient middle-infrared ZGP-OPO pumped by a Q-switched Ho∶LuAG laser with the orthogonally polarized pump recycling scheme[J]. Applied Optics, 2018, 57(27): 8102-8107.
Get Citation
Copy Citation Text
LIU Xiaoxu, HAN Juhong, CAI He, YANG Feng, RONG Kepeng, AN Guofei, WANG You. Review of high repetition-rate mid-infrared lasers for photoelectric countermeasures[J]. Laser Technology, 2021, 45(3): 271
Category:
Received: Aug. 31, 2020
Accepted: --
Published Online: Jul. 16, 2021
The Author Email: WANG You (youwang_2007@aliyun.com)