Acta Laser Biology Sinica, Volume. 34, Issue 3, 229(2025)
Metformin Enhances the Antitumor Activity of in vitro Expanded γδT Cells
[1] [1] BARISA M, KRAMER A M, MAJANI Y,et al. E. colipromotes human V9V2 T cell transition from cytokine-producing bactericidal effectors to professional phagocytic killers in a TCR-dependent manner[J]. Scientific Reports, 2017, 7(1): 2805-2813.
[2] [2] WILLCOX B E, WILLCOX C R. TCR ligands: the quest to solve a 500-million-year-old mystery[J]. Nature Immunology, 2019, 20(2): 121-128.
[3] [3] LOPES N, MCINTYRE C, MARTIN S,et al.Distinct metabolic programs established in the thymus control effector functions of T cell subsets in tumor microenvironments[J]. Nature Immunology, 2021, 22(2): 179-192.
[4] [4] MINCULESCU L, SENGELV H. The role of gamma delta T cells in haematopoietic stem cell transplantation[J]. Scandinavian Journal of Immunology, 2015, 81(6): 459-468.
[5] [5] CHIEN Y H, IWASHIMA M, KAPLAN K B,et al.A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation[J]. Nature, 1987, 327(6124): 677-682.
[6] [6] SILVA-SANTOS B, SERRE K, NORELL H. T cells in cancer[J]. Nature Reviews Immunology, 2015, 15(11): 683-691.
[7] [7] SEBESTYEN Z, PRINZ I, DCHANET-MERVILLE J,et al.Translating gammadelta () T cells and their receptors into cancer cell therapies[J]. Nature Reviews Drug Discovery, 2020, 19(3): 169-184.
[8] [8] YAN W, DUNMALL L S C, LEMOINE N R,et al.The capability of heterogeneous T cells in cancer treatment[J]. Frontiers in Immunology, 2023, 14(1): 128-138.
[9] [9] KABELITZ D, SERRANO R, KOUAKANOU L,et al.Cancer immunotherapy with T cells: many paths ahead of us[J]. Cellular & Molecular Immunology, 2020, 17(9): 925-939.
[10] [10] CHIEN Y, MEYER C, BONNEVILLE M. T cells: first line of defense and beyond[J]. Annual Review of Immunology, 2014, 32(1): 121-155.
[11] [11] MARTIN M D, BADOVINAC V P. Defining memory CD8 T cell[J]. Frontiers in Immunology, 2018, 9(1): 2692-2699.
[12] [12] JAMESON S C, MASOPUST D. Understanding subset diversity in T cell memory[J]. Immunity, 2018, 48(2): 214-226.
[13] [13] TAKAMURA S. Divergence of tissue-memory T cells: distribution and function-based classification[J]. Cold Spring Harbor Perspectives in Biology, 2020, 12(10): 762-781.
[14] [14] ZHANG Z Z, WANG T, WANG X F,et al.Improving the ability of CAR-T cells to hit solid tumors: challenges and strategies[J]. Pharmacological Research, 2022, 175(1): 1060-1069.
[15] [15] PIZZOLATO G, KAMINSKI H, TOSOLINI M,et al.Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRV1 and TCRV2 T lymphocytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(24): 11906-11915.
[16] [16] TANAKA Y, MORITA C T, TANAKA Y,et al.Natural and synthetic non-peptide antigens recognized by human gamma delta T cells[J]. Nature, 1995, 375(6527): 155-158.
[17] [17] SANDSTROM A, PEIGN C M, LGER A,et al.The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human V9V2 T cells[J]. Immunity, 2014, 40(4): 490-500.
[18] [18] YUAN L, MA X, YANG Y,et al.Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate V9V2 T cells[J]. Nature, 2023, 621(7980): 840-848.
[19] [19] LAI A Y, PATEL A, BREWER F,et al.Cutting edge: bispecific T cell engager containing heterodimeric BTN2A1 and BTN3A1 promotes targeted activation of V9V2+ T cells in the presence of costimulation by CD28 or NKG2D[J]. Journal of Immunology, 2022, 209(8): 1475-1480.
[20] [20] LANG J M, KAIKOBAD M R, WALLACE M,et al.Pilot trial of interleukin-2 and zoledronic acid to augment T cells as treatment for patients with refractory renal cell carcinoma[J]. Cancer Immunology, Immunotherapy, 2011, 60(10): 1447-1460.
[21] [21] VAN ACKER H H, ANGUILLE S, WILLEMEN Y,et al.Interleukin-15 enhances the proliferation, stimulatory phenotype, and antitumor effector functions of human gamma delta T cells[J]. Journal of Hematology & Oncology, 2016, 9(1): 101-112.
[22] [22] JI L, LI H, GUO X,et al.Impact of baseline BMI on glycemic control and weight change with metformin monotherapy in Chinese type 2 diabetes patients: phase IV open-label trial[J]. PLoS One, 2013, 8(2): 222-231.
[23] [23] LV Z, GUO Y. Metformin and its benefits for various diseases[J]. Frontiers in Endocrinology, 2020, 11(1): 191-200.
[24] [24] PERNICOVA I, KORBONITS M. Metformin: mode of action and clinical implications for diabetes and cancer[J]. Nature Reviews Endocrinology, 2014, 10(3): 143-156.
[25] [25] SHAW R J. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth[J]. Acta Physiologica, 2009, 196(1): 65-80.
[26] [26] ZHANG C S, LI M, MA T,et al.Metformin activates AMPK through the lysosomal pathway[J]. Cell Metabolism, 2016, 24(4): 521-522.
[27] [27] ZHANG Z, LI F, TIAN Y,et al.Metformin enhances the antitumor activity of CD8+ T lymphocytes via the AMPK-miR-107-Eomes-PD-1 pathway[J]. Journal of Immunology, 2020, 204(9): 2575-2588.
[28] [28] KONDO M, SAKUTA K, NOGUCHI A,et al.Zoledronate facilitates large-scaleex vivoexpansion of functional gammadelta T cells from cancer patients for use in adoptive immunotherapy[J]. Cytotherapy, 2008, 10(8): 842-856.
[29] [29] VAN ACKER H H, ANGUILLE S, WILLEMEN Y,et al.Interleukin-15 enhances the proliferation, stimulatory phenotype, and antitumor effector functions of human gamma delta T cells[J]. Journal of Hematology & Oncology, 2016, 9(1): 101-110.
[32] [32] HELLMANN M D, CIULEANU T E, PLUZANSKI A,et al.Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden[J]. The New England Journal of Medicine, 2018, 378(22): 2093-2104.
[33] [33] MOTZER R J, TANNIR N M, MCDERMOTT D F,et al.Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma[J]. The New England Journal of Medicine, 2018, 378(14): 1277-1290.
[34] [34] SHARMA P, HU-LIESKOVAN S, WARGO J A,et al.Primary, adaptive and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4): 707-723.
[35] [35] LIM S H, BEERS S A, AL-SHAMKHANI A,et al.Agonist antibodies for cancer immunotherapy: history, hopes and challenges[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2024, 30(9): 1712-1723.
[36] [36] WU W, ZHOU Q, MASUBUCHI T,et al.Multiple signaling roles of CD3 and its application in CAR-T cell therapy[J]. Cell, 2020, 182(4): 855-871.
[37] [37] PARKER K R, MIGLIORINI D, PERKEY E,et al.Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies[J]. Cell, 2020, 183(1): 126-142.
[38] [38] FEINS S, KONG W, WILLIAMS E F,et al.An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer[J]. American Journal of Hematology, 2019, 94(1): 3-9.
[39] [39] MA L, DICHWALKAR T, CHANG J Y H,et al.Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor[J]. Science (New York, NY), 2019, 365(6449): 162-168.
[40] [40] WILLCOX B E, WILLCOX C R. Publisher correction: TCR ligands: the quest to solve a 500-million-year-old mystery[J]. Nature Immunology, 2019, 20(4): 516-525.
[41] [41] SILVA-SANTOS B, MENSURADO S. T cells maintain sensitivity to immunotherapy in MHC-I-deficient tumors[J]. Nature Immunology, 2023, 24(3): 387-388.
[42] [42] LASKOWSKI T J, BIEDERSTDT A, REZVANI K. Natural killer cells in antitumour adoptive cell immunotherapy[J]. Nature Reviews Cancer, 2022, 22(10): 557-575.
[43] [43] HAYDAY A, DECHANET-MERVILLE J, ROSSJOHN J,et al.Cancer immunotherapy by T cells[J]. Science (New York, NY), 2024, 386(6717): 7248-7454.
[44] [44] ZHU D, REN X, XIE W,et al.Potential of gamma/delta T cells for solid tumor immunotherapy[J]. Frontiers in Immunology, 2024, 15(1): 146-153.
[45] [45] CASTELLA B, RIGANTI C, FIORE F,et al.Immune modulation by zoledronic acid in human myeloma: an advantageous cross-talk between V9V2 T cells, CD8+ T cells, regulatory T cells, and dendritic cells[J]. Journal of Immunology, 2011, 187(4): 1578-1590.
[46] [46] MATTAROLLO S R, KENNA T, NIEDA M,et al.Chemotherapy and zoledronate sensitize solid tumour cells to Vgamma9Vdelta2 T cell cytotoxicity[J]. Cancer Immunology, Immunotherapy, 2007, 56(8): 1285-1297.
[47] [47] OLOFSSON G H, IDORN M, SIMES A M C,et al.V9V2 T cells concurrently kill cancer cells and cross-present tumor antigens[J]. Frontiers in Immunology, 2021, 12(1): 645-653.
[48] [48] WALDMANN T A. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design[J]. Nature Reviews Immunology, 2006, 6(8): 595-601.
[49] [49] VAN DEN BERGH J M J, VAN TENDELOO V F I, SMITS E L J M. Interleukin-15: new kid on the block for antitumor combination therapy[J]. Cytokine & Growth Factor Reviews, 2015, 26(1): 15-24.
[50] [50] CONLON K C, LUGLI E, WELLES H C,et al.Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2015, 33(1): 74-82.
[51] [51] RIGANTI C, MASSAIA M, DAVEY M S,et al.Human T-cell responses in infection and immunotherapy: common mechanisms, common mediators?[J]. European Journal of Immunology, 2012, 42(7): 1668-1676.
Get Citation
Copy Citation Text
WANG Qinghao, HOU Anyi, HU Xiang, LI Limin, XIANG Shuanglin, DING Xiaofeng. Metformin Enhances the Antitumor Activity of in vitro Expanded γδT Cells[J]. Acta Laser Biology Sinica, 2025, 34(3): 229
Category:
Received: Mar. 17, 2025
Accepted: Jul. 24, 2025
Published Online: Jul. 24, 2025
The Author Email: DING Xiaofeng (dingxiaofeng@hunnu.edu.cn)