Computer Aided Engineering, Volume. 34, Issue 2, 72(2025)
Test and simulation of size effect on shear strength of recycled concrete beams without web reinforcement
[5] [5] MA Z M, TANG Q, WU H X, et al. Mechanical properties and water absorption of cement composites with various fineness and contents of waste brick powder from C&D waste[J]. Cement and Concrete Composites, 2020, 114: 103758. DOI: 10.1016/j.cemconcomp.2020.103758.
[7] [7] de BRITO J, FERREIRA J, PACHECO J, et al. Structural, material, mechanical and durability properties and behaviour of recycled aggregates concrete[J]. Journal of Building Engineering, 2016, 6: 1-16. DOI: 10.1016/j.jobe.2016.02.003.
[13] [13] MA H, XUE J Y, LIU Y H, et al. Cyclic loading tests and shear strength of steel reinforced recycled concrete short columns[J]. Engineering Structures, 2015, 92: 55-68. DOI: 10.1016/j.engstruct.2015.03.009.
[14] [14] SADOWSKA-BURACZEWSKA B, BARNAT-HUNEK D, SZAFRANIEC M. Influence of recycled high-performance aggregate on deformation and load-carrying capacity of reinforced concrete beams[J]. Materials, 2020, 13(1): 186-203. DOI: 10.3390/ma13010186.
[15] [15] LI S P, ZHANG Y B, CHEN W J. Bending performance of unbonded prestressed basalt fiber recycled concrete beams[J]. Engineering Structures, 2020, 221: 110937. DOI: 10.1016/j.engstruct.2020.110937.
[17] [17] ABABNEH A N, ALHASSAN M, ABU-HAIFA M I. Predicting the contribution of recycled aggregate concrete to the shear capacity of beams without transverse reinforcement using artificial neural networks[J]. Case Studies in Construction Materials, 2020, 13: 1-13. DOI: 10.1016/j.cscm.2020.e00414.
[18] [18] YONG Y, ZHAO X Y, XU J J, et al. Machine learning-based evaluation of shear capacity of recycled aggregate concrete beams[J]. Materials, 2020, 13(20): 4552. DOI: 10.3390/ma13204552.
[25] [25] BAANT Z P. Size effect[J]. International Journal of Solids and Structures, 2000, 37: 69-80. DOI: 10.1016/S0020-7683(99)00077-3.
[26] [26] KANI G N J. How safe are our large reinforced concrete beams?[J]. Aci Journal, 1967, 64(3): 128-141. DOI: 10.14359/7549.
[27] [27] WU W K, THOMAS T C H, SHYH J H. Shear strength of reinforced concrete beams[J]. Aci Structural Journal, 2014, 111(4): 809-818. DOI: 10.14359/51686733.
[28] [28] COLLINS M P, KUCHMA D. How safe are our large, lightly reinforced concrete beams, slabs, and footings?[J]. Aci Structural Journal, 1999, 96(4): 482-490.
[29] [29] BAZANT Z P, YU Q. Designing against size effect on shear strength of reinforced concrete beams without stirrups: II. verification and calibration[J]. Journal of Structural Engineering, 2005, 131(12): 1886-1897. DOI: 10.1061/(ASCE)0733-9445(2005)131:12(1886).
[30] [30] BAE Y H, LEE J H, YOON Y S. Prediction of shear strength in high-strength concrete beams considering size effect[J]. Magazine of Concrete Research, 2006, 58(4): 193-200. DOI: 10.1680/macr.2006.58.4.193.
[31] [31] ANGELAKOS D, BENTZ E C, COLLINS M P. Effect of concrete strength and minimum stirrups on shear strength of large members[J]. Aci Structural Journal, 2001, 98(3): 291-300. DOI: 10.14359/10220.
[32] [32] ZIENKIEWICZ O C, TAYLOR R L, ZHU J Z. The finite element method: its basis and fundamentals[M]. 7th Ed. Oxford: Butterworth-Heinemann, 2005. DOI: 10.1016/b978-1-85617-633-0.00020-4.
[35] [35] TARTAGLIA R, D’ANIELLO M, ZIMBRU M. Experimental and numerical study on the T-Stub behaviour with preloaded bolts under large deformations[J]. Structures, 2020, 27: 2137-2155. DOI: 10.1016/j.istruc.2020.08.039.
[36] [36] ASCHER U M, RUUTH S J, SPITERI R J. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations[J]. Applied Numerical Mathematics, 1997, 25(2-3): 151-167. DOI: 10.1016/S0168-9274(97)00056-1.
[37] [37] CHOI S, SHAH S P, THIENEL K C. Strain softening of concrete in compression under different end constraints[J]. Magazine of Concrete Research, 1996, 48(175): 103-115. DOI: 10.1680/macr.1996.48.175.103.
[38] [38] KRAJCINOVIC D, FANELLA D. A micromechanical damage model for concrete[J]. Engineering Fracture Mechanics, 1986, 25(5-6): 585-596. DOI: 10.1016/0013-7944(86)90024-X.
[39] [39] SABET F A, KORIC S, IDKAIDEK A, et al. High-performance computing comparison of implicit and explicit nonlinear finite element simulations of trabecular bone[J]. Computer Methods and Programs in Biomedicine, 2021, 200: 105870. DOI: 10.1016/j.cmpb.2020.105870.
[40] [40] KHAN S H, YILDIRIM I, OZDEMIR M. Convergence of an implicit algorithm for two families of nonexpansive mappings[J]. Computers and Mathematics with Applications, 2010, 59(9): 3084-3091. DOI: 10.1016/j.camwa.2010.02.029.
[42] [42] HAREWOOD F J, MCHUHG P E. Comparison of the implicit and explicit finite element methods using crystal plasticity[J]. Computational Materials Science, 2007, 39(2): 481-494. DOI: 10.1016/j.commatsci.2006.08.002.
[43] [43] OLIVER J, HUESPE A E, CANTE J C. An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(21-24): 1865-1889. DOI: 10.1016/j.cma.2007.11.027.
[44] [44] BELYTSCHKO T, LIN J I, TSAY C S. Explicit algorithms for the nonlinear dynamics of shells[J]. Computer Methods in Applied Mechanics and Engineering, 1984, 42(2): 225-251. DOI: 10.1016/0045-7825(84)90026-4.
[45] [45] NATRIO P, SILVESTRE N, CAMOTIM D. Web crippling failure using quasi-static FE models[J]. Thin-Walled Structures, 2014, 84: 34-49. DOI: 10.1016/j.tws.2014.05.003.
[50] [50] LEE J, FEVENS G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900. DOI: 10.1061/(asce)0733-9399(1998)124:8(892).
Get Citation
Copy Citation Text
ZHOU Huang, ZENG Xin, YAN Kewu, YUAN Jie, ZHANG Binbin, ZHOU Ye. Test and simulation of size effect on shear strength of recycled concrete beams without web reinforcement[J]. Computer Aided Engineering, 2025, 34(2): 72
Received: Oct. 11, 2024
Accepted: Aug. 22, 2025
Published Online: Aug. 22, 2025
The Author Email: