Chinese Journal of Lasers, Volume. 51, Issue 16, 1602103(2024)

Sim-YOLOv8 Object Detection Model for DR Image Defects in Aluminum Alloy Welds

Lei Wu1,2, Yukun Chu2, Honggang Yang2, and Yunxia Chen1、*
Author Affiliations
  • 1School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China
  • 2Shanghai Dianji University, Shanghai 201306, China
  • show less
    Figures & Tables(11)
    YOLOv8 frame diagram
    Structures of each module in YOLOv8. (a) CBS module; (b) C2f module; (c) BottleNeck module; (d) SPPF module
    Sim-YOLOv8 structure diagram
    Structure diagrams of improved S-C2f module. (a) S-C2f module; (b) BottleNeck in S-C2f module
    Principle of Focus module
    Model detection effect comparison
    Comparison of model improvement effect. (a) Detection effect of the original model; (b) detection effect of improved model
    • Table 1. Comparison of precision and performance indexes for different models

      View table

      Table 1. Comparison of precision and performance indexes for different models

      ModelAP /%mAP@0.5 /%FPS#Params /106FLOPs /109
      PoreSlag inclusionIncomplete penetration
      Sim-YOLOv893.694.497.395.12173.08.1
      YOLOv891.192.595.693.12223.08.1
      YOLOv7 Tiny81.790.594.188.72226.213.8
      YOLOv5s88.291.177.185.51567.216.5
      YOLOv4 Tiny63.977.645.662.31029.026.8
      SSD83914974.112087.917.4
      DETR70852660.331596.96.5
    • Table 2. Comparison of verification and test sets indicators for YOLOv8

      View table

      Table 2. Comparison of verification and test sets indicators for YOLOv8

      SetAP /%mAP@0.5 /%
      PoreSlag inclusionIncomplete penetration
      Test91.192.595.693.1
      Verification90.193.395.793.0
    • Table 3. Comparison of verification and test sets indicators for Sim-YOLOv8

      View table

      Table 3. Comparison of verification and test sets indicators for Sim-YOLOv8

      SetAP /%mAP@0.5 /%
      PoreSlag inclusionIncomplete penetration
      Test93.694.497.395.1
      Verification92.594.896.794.7
    • Table 4. Comparison of different models in terms of parameter number, weight file size and inference speed

      View table

      Table 4. Comparison of different models in terms of parameter number, weight file size and inference speed

      GroupSimAMWIoUFocusmAP@0.5 /%FPS#ParamsFLOPs /109
      093.122230062338.1
      194.1 (↑ 1 percentage point)22730062338.1
      294.4 (↑ 1.3 percentage points)20430062338.1
      395.1 (↑ 2 percentage points)21730127298.1
    Tools

    Get Citation

    Copy Citation Text

    Lei Wu, Yukun Chu, Honggang Yang, Yunxia Chen. Sim-YOLOv8 Object Detection Model for DR Image Defects in Aluminum Alloy Welds[J]. Chinese Journal of Lasers, 2024, 51(16): 1602103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Forming Manufacturing

    Received: Dec. 7, 2023

    Accepted: Feb. 5, 2024

    Published Online: Jul. 29, 2024

    The Author Email: Yunxia Chen (cyx1978@yeah.net)

    DOI:10.3788/CJL231485

    CSTR:32183.14.CJL231485

    Topics