Laser & Optoelectronics Progress, Volume. 51, Issue 1, 10004(2014)
Recent Development in Microfluidic Optical Waveguide Devices
[1] [1] Pang L, Chen H M, Freeman L M, et al..Optofluidic devices and applications inphotonics,sensing and imaging [J]. Lab Chip, 2012, 12(19): 3543-3551.
[2] [2] Datta A, Eom I, Dhar A, et al.. Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon [J]. IEEE Sens J, 2003, 3(6): 788-795.
[3] [3] C Monat, P Domachuk, B J Eggleton. Integrated optofluidics: a new river of light [J]. Nauret Photon, 2007, 1(2): 106-114.
[4] [4] Haiyi Sun, Fei He, Zenghui Zhou, et al.. Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pluses [J]. Opt Lett, 2007, 32(11): 1536-1538.
[6] [6] S E Lee, G L Liu, F Kim, et al.. Remote optical switch for localizad and selective control of gene interference [J]. NIHPA, 2009, 9(2): 562-570.
[7] [7] D B Wolfe,D V Vezenov, B T Mayers, et al.. Diffusion-controlled optical elements foroptofluidics [J]. Appl Phys Lett, 2005, 87(18): 181105.
[8] [8] N T Nguyen, T F Kong, J H Goh, et al.. A micro optofluidic splitter and switch based on hydrodynamic spreading [J]. J Micromech Microeng, 2007, 17(11): 2169-2174.
[9] [9] Z Y Li, Z Y Zhang, T Emery, et al.. Single mode optofluidic discributed feedback dye laser [J]. Opt. Express, 2006, 14(2): 696-701.
[10] [10] H Cole, S Morris. Liquid-crystal lasers [J]. Nature Photon, 2010, 4(10): 676-685.
[11] [11] A F Naumov, M Y Lovketv, I R Guralnik, et al.. Liquid-crystal adaptive lenses withmodalcontrol [J]. Opt Lett, 1998, 23(13): 992-994.
[12] [12] K S Lee, S B Kin, K H Lee, et al.. Three-dimensional microfluidic liquid-core/ liquid-cladding waveguide [J]. Appl Phys Lett, 2010, 97(2): 021109.
[13] [13] Y Fainman, L P Lee, D Psalis, et al.. Optofluidics, Fundamentals, Devices, and Applications [M]. New: York: McGraw Hill, 2010.
[14] [14] Korfmacher W A. Foundstion review: principles and applications of LC-MS in new drug discovery [J]. Drug Discov Today, 2005, 10(20): 1537-1637.
[15] [15] Chih-Wei Wu, Gwo-Ching Gong. Fabrication of PDMS-based nitrite sensors using teflon AF coating microchannels [J]. IEEE Sens J , 2008, 8(5): 465-469.
[16] [16] L Zhu, Y Huangand A Yariv. Integrated microfluidic variable optical attenuator [J]. Opt Express, 2005, 13(24): 9916-9921.
[17] [17] H Yu, G Zhou, F S Chau, et al.. A variable optical attenuator based on optofluidic technology [J]. J Micromech Microeng, 2008, 18(11): 111516.
[18] [18] M I Lapsley, S S Lin, X Mao, et al.. An in-plane, variable optical attenuator using a fluid-based tunable reflective interface [J]. Appl Phys Lett, 2009, 95(8): 083507.
[19] [19] Xionggui Tang, Rujian Li, Jinkun Liao, et al.. A scheme for variable optofluidic attenuator: design and simulation [J]. Opt Commun, 2013, 305: 175-179.
[20] [20] D Erickson, T Rockwood, T Emery, et al.. Nanofluidic tuning of photonic crystal circuits [C]. SPIE, 2007, 6475: 647513.
[21] [21] D Nilsson, S Balslev, A Kristensen. A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer (COC). [J]. J Micromech Microeng, 2005, 15(2): 296-300.
[22] [22] D Psaltis, S R Quake, C Yang. Developing optofluidic technology through the fusion of microfluidics and optics [J]. Nature, 2006, 442(7101): 381-386.
[23] [23] D J Wolfe, R S Conroy, P Garstecki, et al.. Dynamic control of liquid core/liquid-cladding optical waveguides [J]. PNAS, 2004, 101(34): 12434-12438.
[24] [24] Wenjie Lan, Shaowei Li, Jianhong Xu, et al.. Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device [J]. Langmuir, 2011, 27(21): 13242-13247.
Get Citation
Copy Citation Text
Li Rujian, Tang Xionggui, Liao Jinkun, Guo Haibo, Yin Gen. Recent Development in Microfluidic Optical Waveguide Devices[J]. Laser & Optoelectronics Progress, 2014, 51(1): 10004
Category: Reviews
Received: Sep. 11, 2013
Accepted: --
Published Online: Dec. 26, 2013
The Author Email: Rujian Li (lirujian.fly@163.com)