INFRARED, Volume. 45, Issue 4, 31(2024)

Bias Correction of Brightness Temperature in Medium Wave Channel of FY-4A/GIIRS Based on Ensemble Learning

Gen WANG1、*, Cheng-ming DU1, Yun JIANG1, Chuan-yu FAN1, Yue PAN1, and Song YUAN2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(14)

    [1] [1] Rabier F, Fourrie N, Chafai D, et al. Channel selection methods for infrared atmospheric sounding interferometer radiances [J]. Quarterly Journal of the Royal Meteorological Society, 2002,128(581) : 1011-1027.

    [2] [2] Cardinali C. Forecast sensitivity to observation(FSO) as a diagnostic tool [R]. Reading: Euro-pean Centre for Medium-Range Weather Fore-casts, 2009.

    [4] [4] Harris B A, Kelly G. A satellite radiance bias correction scheme for data assimilation[J].Quarterly Journal of the Royal Meteorological Society,2001, 127(574): 1453-1468.

    [5] [5] Dee D P. Variational bias correction of radiance data in the ECMWF system [C]. Reading: Proceedings of the ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, 2004.

    [6] [6] Jin J B, Lin H X, Segers A, et al. Machine learning for observation bias correction with application to dust storm data assimilation [J]. Atmospheric Chemistry and Physics, 2019, 19(15): 10009-10026.

    [7] [7] Huang P Y, Guo Q, Han C P, et al. An improved method combining ANN and 1D-Var for the retrieval of atmospheric temperature profiles from FY-4A/GIIRS Hyperspectral data [J]. Remote Sensing, 2021, 13(3): 481.

    [8] [8] Huang P Y, Guo Q, Han C P, et al. An improved method combining CNN and 1D-Var for the retrieval of atmospheric humidity profiles from FY-4A/GIIRS Hyperspectral data [J]. Remote Sensing, 2021, 13(23): 4737.

    [10] [10] Wang G, Chen J, Wang Y. Bias correction of channel brightness temperature of FY-4A hyper spectral GIIRS based on machine learning [J].Meteorological and Environmental Research,2022, 13(1): 26-30.

    [12] [12] Yang J, Zhang Z Q, Wei C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4 (FY-4) [J]. Bulletin of the American Meteorological Society,2017, 98(8): 1637-1658.

    [13] [13] Qi J F, Liu C Y, Chi J W, et al. An ensemble based machine learning model for estimation of subsurface thermal structure in the South China Sea [J]. Remote Sensing, 2022, 14(13): 3207.

    [14] [14] Natras R, Soja B, Schmidt M. Ensemble machine learning of random forest, AdaBoost and XGBoost for vertical total electron content forecasting [J].Remote Sensing, 2022, 14(15): 3547.

    [16] [16] Altmann A, Tolosi L, Sander O, et al. Permutation importance: a corrected feature importance measure [J]. Bioinformatics, 2010, 26 (10):1340-1347.

    [19] [19] Saunders R, Hocking J, Turner E, et al. An update on the RTTOV fast radiative transfer model(currently at version 12) [J]. Geoscienti fic Model Development, 2018, 11(7): 2717-2732.

    [20] [20] Yin R Y, Han W, Gao Z Q, et al. The evaluation of FY4A's Geostationary Interferometric Infrared Sounder (GIIRS) longwave temperature sounding channels using the GRAPES global 4DVar [J].Quarterly Journal of the Royal Meteorological Society, 2020,146(728): 1459-1476.

    CLP Journals

    [1] Meng-Qi Li, Yu-Jun Zhang, Ying He, Kun You, Bo-Qiang Fan, Dong-Qi Yu, Hao Xie, Bo-En Lei, Xiao-Yi Li, Jian-Guo Liu, Wen-Qing Liu. NH3 aliasing absorption spectra at 1103.4 cm–1 based on continuous quantum cascade laser [J]. Acta Physica Sinica, 2020, 69(7): 074201-1

    Tools

    Get Citation

    Copy Citation Text

    WANG Gen, DU Cheng-ming, JIANG Yun, FAN Chuan-yu, PAN Yue, YUAN Song. Bias Correction of Brightness Temperature in Medium Wave Channel of FY-4A/GIIRS Based on Ensemble Learning[J]. INFRARED, 2024, 45(4): 31

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Nov. 6, 2023

    Accepted: --

    Published Online: Sep. 29, 2024

    The Author Email: Gen WANG (203wanggen@163.com)

    DOI:10.3969/j.issn.1672-8785.2024.04.005

    Topics