Chinese Journal of Lasers, Volume. 48, Issue 2, 0202016(2021)

Femtosecond Laser Four-Dimensional Printing Based on Humidity Responsive Hydrogels

Chunsan Deng1, Xuhao Fan1, Yufeng Tao1, Binzhang Jiao1, Yuncheng Liu1, Liangti Qu2, Yang Zhao3, Xin Li4, and Wei Xiong1、*
Author Affiliations
  • 1School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • 2Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Materials Processing Technology, Tsinghua University, Beijing 100084, China
  • 3School of Chemistry and Chemical Engineering, Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, Beijing Institute of Technology, Beijing 100081, China
  • 4School of Mechanical Engineering, Laser Micro/Nano Fabrication Laboratory, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(30)

    [2] Zolfagharian A, Kaynak A, Khoo S Y et al. Pattern-driven 4D printing[J]. Sensors and Actuators A: Physical, 274, 231-243(2018).

    [3] Baldi A. D'Aniello P, Giuliano G, et al. Behavior of lipoprotein X (LP-X) in viral hepatitis[J]. Quaderni Sclavo di Diagnostica Clinica e di Laboratorio, 11, 122-130(1975).

    [4] Davidson E C, Kotikian A, Li S C et al. 3D printable and reconfigurable liquid crystal elastomers with light-induced shape memory via dynamic bond exchange[J]. Advanced Materials, 32, 1905682(2020).

    [5] Han D, Farino C, Yang C et al. Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel[J]. ACS Applied Materials & Interfaces, 10, 17512-17518(2018).

    [6] Behl M, Razzaq M Y, Lendlein A. Multifunctional shape-memory polymers[J]. Advanced Materials, 22, 3388-3410(2010).

    [8] Buguin A, Li M H, Silberzan P et al. Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography[J]. Journal of the American Chemical Society, 128, 1088-1089(2006).

    [9] Shi Y S, Wu H Z, Yan C Z et al. Four-dimensionalprinting: the additive manufacturing technology of intelligent components[J]. Journal of Mechanical Engineering, 56, 1-25(2020).

    [10] Zhao Z A, Kuang X, Yuan C et al. Hydrophilic/hydrophobic composite shape-shifting structures[J]. ACS Applied Materials & Interfaces, 10, 19932-19939(2018).

    [11] Ji Z Y, Yan C Y, Yu B et al. 3D printing of hydrogel architectures with complex and controllable shape deformation[J]. Advanced Materials Technologies, 4, 1800713(2019).

    [12] Montero de Espinosa L, Meesorn W, Moatsou D et al. Bioinspiredpolymer systems with stimuli-responsive mechanical properties[J]. Chemical Reviews, 117, 12851-12892(2017).

    [13] Li C S, Lo C W, Zhu D F et al. Synthesis of a photoresponsive liquid-crystalline polymer containing azobenzene[J]. Macromolecular Rapid Communications, 30, 1928-1935(2009).

    [14] Liu J, Wang M L, Wu X H et al[J]. Barrier property of polarized light oriented azobenzene containing side-chain liquid crystalline polymer Acta Polymerica Sinica, 2011, 729-734.

    [15] Qin H L, Zhang T, Li N et al. Anisotropic and self-healing hydrogels with multi-responsive actuating capability[J]. Nature Communications, 10, 2202(2019).

    [17] del Barrio J, Sánchez-Somolinos C. Light to shape the future: from photolithography to 4D printing[J]. Advanced Optical Materials, 7, 1900598(2019).

    [19] Stroganov V, Pant J, Stoychev G et al. 4D biofabrication: 3D cell patterning using shape-changing films[J]. Advanced Functional Materials, 28, 1706248(2018).

    [20] Huang L M, Jiang R Q, Wu J J et al. Ultrafast digital printing toward 4D shape changing materials[J]. Advanced Materials, 29, 1605390(2017).

    [25] Wei S, Liu J, Zhao Y et al. Protein-based 3D microstructures with controllable morphology and pH-responsive properties[J]. ACS Applied Materials & Interfaces, 9, 42247-42257(2017).

    [26] Zhang Y L, Tian Y, Wang H et al. Dual-3D femtosecond laser nanofabrication enables dynamic actuation[J]. ACS Nano, 13, 4041-4048(2019).

    [27] Jin D D, Chen Q Y, Huang T Y et al. Four-dimensional direct laser writing of reconfigurable compound micromachines[J]. Materials Today, 32, 19-25(2020).

    [28] Lü C, Sun X C, Xia H et al. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing[J]. Sensors and Actuators B: Chemical, 259, 736-744(2018).

    [29] Arazoe H, Miyajima D, Akaike K et al. An autonomous actuator driven by fluctuations in ambient humidity[J]. Nature Materials, 15, 1084-1089(2016).

    [30] Dong Y, Wang J, Guo X et al. Multi-stimuli-responsive programmable biomimetic actuator[J]. Nature Communications, 10, 4087(2019).

    Tools

    Get Citation

    Copy Citation Text

    Chunsan Deng, Xuhao Fan, Yufeng Tao, Binzhang Jiao, Yuncheng Liu, Liangti Qu, Yang Zhao, Xin Li, Wei Xiong. Femtosecond Laser Four-Dimensional Printing Based on Humidity Responsive Hydrogels[J]. Chinese Journal of Lasers, 2021, 48(2): 0202016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Aug. 31, 2020

    Accepted: Nov. 5, 2020

    Published Online: Jan. 7, 2021

    The Author Email: Xiong Wei (weixiong@hust.edu.cn)

    DOI:10.3788/CJL202148.0202016

    Topics