Opto-Electronic Engineering, Volume. 51, Issue 6, 240048-1(2024)
Preparation and optical characterization of large-area self-assembled gold nanoparticle superlattice films
[1] García-Lojo D, Núñez-Sánchez S, Gómez-Graña S et al. Plasmonic supercrystals[J]. Acc Chem Res, 52, 1855-1864(2019).
[2] Ross M B, Mirkin C A, Schatz G C. Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures[J]. J. Phys Chem C, 120, 816-830(2016).
[3] Mueller N S, Okamura Y, Vieira B G M et al. Deep strong light–matter coupling in plasmonic nanoparticle crystals[J]. Nature, 583, 780-784(2020).
[4] Solís D M, Taboada J M, Obelleiro F et al. Toward ultimate nanoplasmonics modeling[J]. ACS Nano, 8, 7559-7570(2014).
[5] Blanco-Formoso M, Pazos-Perez N, Alvarez-Puebla R A. Fabrication of plasmonic supercrystals and their SERS enhancing properties[J]. ACS Omega, 5, 25485-25492(2020).
[6] Palmer S J, Xiao X F, Pazos-Perez N et al. Extraordinarily transparent compact metallic metamaterials[J]. Nat Commun, 10, 2118(2019).
[7] Sun S H, Murray C B, Weller D et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 287, 1989-1992(2000).
[8] Shevchenko E V, Ringler M, Schwemer A et al. Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties[J]. J Am Chem Soc, 130, 3274-3275(2008).
[9] Bigioni T P, Lin X M, Nguyen T T et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers[J]. Nature Materials, 5, 265-270(2006).
[10] Vieira B G M, Mueller N S, Barros E B et al. Plasmonic properties of close-packed metallic nanoparticle mono- and bilayers[J]. J Phys Chem C, 123, 17951-17960(2019).
[11] Mueller N S, Vieira B G M, Höing D et al. Direct optical excitation of dark plasmons for hot electron generation[J]. Faraday Discuss, 214, 159-173(2019).
[12] Mueller N S, Vieira B G M, Schulz F et al. Dark interlayer plasmons in colloidal gold nanoparticle bi- and few-layers[J]. ACS Photonics, 5, 3962-3969(2018).
[13] Tong J C, Suo F, Ma J H Z et al. Surface plasmon enhanced infrared photodetection[J]. Opto-Electron Adv, 2, 180026(2019).
[14] Chiu C Y, Chen C K, Chang C W et al. Surfactant-directed fabrication of supercrystals from the assembly of polyhedral Au-Pd core-shell nanocrystals and their electrical and optical properties[J]. J Am Chem Soc, 137, 2265-2275(2015).
[15] Gómez-Graña S, Le Beulze A. Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies[J]. Mater Horiz, 3, 596-601(2016).
[16] Alvarez-Puebla R A, Agarwal A, Manna P et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 8157-8161(2011).
[17] Alba M, Pazos-Perez N, Vaz B et al. Macroscale plasmonic substrates for highly sensitive surface-enhanced Raman scattering[J]. Angew Chem Int Ed, 52, 6459-6463(2013).
[18] Yi C L, Liu H, Zhang S Y et al. Self-limiting directional nanoparticle bonding governed by reaction stoichiometry[J]. Science, 369, 1369-1374(2020).
[19] Chakraborty I N, Roy P, Rao A et al. The unconventional role of surface ligands in dictating the light harvesting properties of quantum dots[J]. J Mater Chem A, 9, 7422-7457(2021).
[20] Roy P, Devatha G, Roy S et al. Electrostatically driven resonance energy transfer in an all-quantum dot based donor-acceptor system[J]. J Phys Chem Lett, 11, 5354-5360(2020).
[21] Bai P, Yang S, Bao W et al. Diversifying nanoparticle assemblies in supramolecule nanocomposites via cylindrical confinement[J]. Nano Lett, 17, 6847-6854(2017).
[22] Macfarlane R J, Lee B, Jones M R et al. Nanoparticle superlattice engineering with DNA[J]. Science, 334, 204-208(2011).
[23] Auyeung E, Li T I N G, Senesi A J et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra[J]. Nature, 505, 73-77(2014).
[24] Schulz F, Pavelka O, Lehmkühler F et al. Structural order in plasmonic superlattices[J]. Nat Commun, 11, 3821(2020).
[25] Song L P, Xu B B, Cheng Q et al. Instant interfacial self-assembly for homogeneous nanoparticle monolayer enabled conformal “lift-on” thin film technology[J]. Sci Adv, 7, eabk2852(2021).
[26] Zheng Y Q, Zhong X L, Li Z Y et al. Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm[J]. Part Part Syst Char, 31, 266-273(2014).
[27] Sun Q, Aguila B, Perman J A et al. Integrating superwettability within covalent organic frameworks for functional coating[J]. Chem, 4, 1726-1739(2018).
[28] Han Y Y, Chen P P, Wang M et al. SPPs directional excitation of linearly polarized light based on catenary nanoparticle metasurface[J]. Opto-Electron Eng, 49, 220105(2022).
Get Citation
Copy Citation Text
Xin Huang, Zuoyan Shi, Mingxia Song, Ying Yu, Shaoding Liu. Preparation and optical characterization of large-area self-assembled gold nanoparticle superlattice films[J]. Opto-Electronic Engineering, 2024, 51(6): 240048-1
Category:
Received: Mar. 3, 2024
Accepted: Apr. 2, 2024
Published Online: Oct. 21, 2024
The Author Email: Ying Yu (虞应), Shaoding Liu (刘绍鼎)