Acta Optica Sinica, Volume. 40, Issue 14, 1412002(2020)

Metal Fatigue Damage Assessment Based on Polarized Thermography

Fangbin Wang1,2,4、*, Fan Sun1,2, Darong Zhu1,2,4, Tao Liu1,2,4, Xue Wang1,2, and Feng Wang3
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • 2Key Laboratory of Construction Machinery Fault Diagnosis and Early Warning Technology, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • 3Key Laboratory of Polarization Imaging Detection Technology in Anhui Province, Hefei, Anhui 230031, China
  • 4Anhui Education Department Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei, Anhui 230601, China
  • show less
    Figures & Tables(13)
    Schematic diagram of polarized thermal imaging for fatigue damage
    Fatigue testing machine (left) and infrared polarization camera (right)
    Specimen parameters (unit: mm)
    Surface morphology of metal specimen during fatigue
    Evolution of roughness and correlation length during fatigue (before fracture). (a) Roughness; (b) correlation length
    Polarized azimuth images and S0 image of spontaneous emission after registration. (a) I(0°); (b) I(60°); (c) I(120°); (d) S0
    Stokes parameters and polarization images after analysis. (a) S0 ; (b) S1 ; (c) S2 ; (d) DOP; (e) AOP
    Infrared polarization feature extraction process
    Feature changes of metal specimen during fatigue
    Results of model training,validation,test and all datasets
    • Table 1. Chemical composition of Q235

      View table

      Table 1. Chemical composition of Q235

      CSiMnCrCoSPFe
      0.2200.2300.6500.0440.0810.0450.04098.73
    • Table 2. Contribution rates of feature quantity variance and cumulative variance

      View table

      Table 2. Contribution rates of feature quantity variance and cumulative variance

      ParameterS¯0S02P¯P2θ¯θ2I¯(0°)I¯2(0°)
      wi /%32.5027.2911.237.375.304.544.233.01
      ρ /%32.5059.7971.0278.3983.6988.2392.4695.47
      ParameterI¯(60°)I2(60°)I¯(120°)I2(120°)S¯1S12S¯2S22
      wi /%1.761.230.870.310.170.090.060.04
      ρ /%97.2398.4699.3399.6499.8199.9099.96100
    • Table 3. Prediction results of fatigue damage for a tested piece

      View table

      Table 3. Prediction results of fatigue damage for a tested piece

      Fatigue cycles50010001500200025003000350040004500
      Predication cycles6447651641210723722904416946544949
      Error /%28.823.59.35.35.03.219.116.39.9
      Fatigue cycles500055006000650070007500800085009000
      Predication cycles4284538748015253707382291002389837372
      Error /%14.32.019.919.11.09.725.25.618.0
      Fatigue cycles95001000010500110001150012000125001300013500
      Predication cycles83838348752490301023311229102831052010184
      Error /%11.716.528.317.911.16.417.719.024.5
    Tools

    Get Citation

    Copy Citation Text

    Fangbin Wang, Fan Sun, Darong Zhu, Tao Liu, Xue Wang, Feng Wang. Metal Fatigue Damage Assessment Based on Polarized Thermography[J]. Acta Optica Sinica, 2020, 40(14): 1412002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Dec. 26, 2019

    Accepted: Apr. 14, 2020

    Published Online: Jul. 23, 2020

    The Author Email: Wang Fangbin (wangfb@ahjzu.edu.cn)

    DOI:10.3788/AOS202040.1412002

    Topics