Piezoelectrics & Acoustooptics, Volume. 46, Issue 5, 755(2024)
Study on Flexural Vibration of Lithium Niobate Beam with an Inversion Layer
[1] [1] WANG Zhi, ZHAO Ming, YANG Jiashi. A piezoelectric gyroscope with self-equilibrated coriolis force based on overtone thickness-shear modes of a lithium niobate plate with an inversion layer [J]. IEEE Sensors Journal, 2014, 15(3): 1794-1799.
[2] [2] OBITANI K, ARAYA K, YACHI M, et al. Piezoelectric disk gyroscope fabricated with single-crystal lithium niobate [J]. Journal of Microelectromechanical Systems, 2021, 30(3): 384-391.
[3] [3] ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator [J]. Optica, 2017, 4(12): 1536-1537.
[4] [4] ZHANG Zhiyong, ZHU Yongyuan, ZHU Shining, et al. Study on the formation mechanism of a complex domain structure in LiNbO3 [J]. Journal of Applied Physics, 1995, 77(8): 4136-4138.
[5] [5] NAKAMURA K, HARUYASU A, HIROSHI S. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment [J]. Applied Physics Letters,1987, 50(20): 1413-1414.
[6] [6] LI N, QIAN Z, YANG J. Two-dimensional equations for piezoelectric thin-film acoustic wave resonators [J]. International Journal of Solids and Structures, 2017, 110: 170-177.
[7] [7] HUANG D, YANG J. Flexural vibration of a lithium niobate piezoelectric plate with a ferroelectric inversion layer [J]. Mechanics of Advanced Materials and Structures, 2020, 27(10): 831-839.
[8] [8] MILAZZO A. A one-dimensional model for dynamic analysis of generally layered magneto-electro-elastic beams [J]. Journal of Sound and Vibration, 2013, 332(2): 465-483.
[10] [10] DKMECI M C. A theory of high frequency vibrations of piezoelectric cyrstal bars [J]. International Journal of Solids and Structures, 1974, 10(4): 401-409.
[11] [11] YANG J S. Equations for the extension and flexure of a piezoelectric beam with rectangular cross section and applications [J]. International Journal of Applied Electromagnetics and Mechanics, 1998, 9(4): 409-420.
[12] [12] LIU Chong, HUANG Dejin, ZHEN Xiahu. The dispersion relations of a lithium niobate plate covered with a thin isotropic elastic layer [C]∥ [S.l.]:2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, IEEE, 2022: 552-556.
[13] [13] MINDLIN R D. An introduction to the mathematical theory of vibrations of elastic plates [M]. New Jersey: World Scientific, 2007.
[14] [14] MINDLIN R D. Low frequency vibrations of elastic bars [J]. International Journal of Solids and Structures, 1976, 12(1): 27-49.
[15] [15] HUANG Dejin, YANG Jiashi. A second-order theory for lithium niobate piezoelectric plates with a ferroelectric inversion layer in coupled extensional, thickness-stretch and symmetric thickness-shear motions [J]. Acta Mechanica, 2020, 231(12): 5239-5250.
[16] [16] WARNER A W, ONOE M, COUQIN G A. Determination of elastic and piezoelectric constants for crystals in class (3m) [J]. J Acoust Soc Am, 1967, 42: 1223-1231.
[17] [17] SMITH R T, WELSH F S. Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate [J]. J Appl Phys, 1971, 42: 2219-2230.
[18] [18] LIU Chong, ZHEN Xiaohu, HUANG Dejin. Study on an energy harvester using a first-order plate theory [C]∥Zhengzhou, China: 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications, 2021: 551-554.
[19] [19] QU Yilin, FENG Jin, YANG Jiashi. Vibrating flexoelectric micro-beams as angular rate sensors [J]. Micromachines, 2022, 13(8): 1243.
Get Citation
Copy Citation Text
LIU Chong, HUANG Dejin, CHEN Hui, MA Tingfeng. Study on Flexural Vibration of Lithium Niobate Beam with an Inversion Layer[J]. Piezoelectrics & Acoustooptics, 2024, 46(5): 755
Category:
Received: Nov. 21, 2023
Accepted: Jan. 17, 2025
Published Online: Jan. 17, 2025
The Author Email: