Chinese Journal of Lasers, Volume. 47, Issue 11, 1106005(2020)

Intelligent Optical Communication Based on Wasserstein Generative Adversarial Network

Mu Di*, Meng Wen, Zhao Shanghong, Wang Xiang, and Liu Wenya
Author Affiliations
  • School of Information and Navigation, Air Force Engineering University, Xi''an, Shaanxi 710077, China
  • show less
    Figures & Tables(8)
    End-to-end communication system. (a) Structure diagram of end-to-end communication system; (b) structure diagram of automatic encoder and automatic decoder
    Diagram of GAN structure
    Training structure of receiver, transmitter, generator
    BLER curve in AWGN channel
    BLER curve in Lognormal channel
    Change of accuracy and loss value with number of samples. (a) Loss value; (b) accuracy
    • Table 1. Model parameter

      View table

      Table 1. Model parameter

      ParameterValue
      Hidden layer of transmitter32, 32
      Transmitter learning rate0.0005
      Hidden layer of receiver32, 32
      Receiver learning rate0.0005
      Hidden layer of generator128, 128, 128
      Hidden layer of discriminator32, 32, 32
      Generator and discriminatorlearning rate0.0001
    • Table 2. Lognormal channel parameters

      View table

      Table 2. Lognormal channel parameters

      ParameterSymbolValue
      Link distanceL /km100
      Laser wavelengthλ /nm1550
      Photoelectric conversion efficiencyR1
      Receiver diameterD /mm200
      Refraction parameterCn22.7×10-18
      Rytov varianceσR0.24
    Tools

    Get Citation

    Copy Citation Text

    Mu Di, Meng Wen, Zhao Shanghong, Wang Xiang, Liu Wenya. Intelligent Optical Communication Based on Wasserstein Generative Adversarial Network[J]. Chinese Journal of Lasers, 2020, 47(11): 1106005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber optics and optical communication

    Received: Jun. 5, 2020

    Accepted: --

    Published Online: Nov. 2, 2020

    The Author Email: Di Mu (122992542@qq.com)

    DOI:10.3788/CJL202047.1106005

    Topics