Remote Sensing Technology and Application, Volume. 39, Issue 5, 1106(2024)

Research on Remote Sensing Intelligent Extraction Method of Tropical Rice Planting Area based on Deep Learning: A Case Study of Haikou City, Hainan Province

Chunxiao WANG, Zengzhao XING, Jinsha LU, Fei CAO, Jianxin SUN, Xiaojing CAI, Xiaojuan LIU, and Xiaoqing XIONG
Author Affiliations
  • Hainan Geomatics Center of Ministry of Natural Resources, Haikou570203,China
  • show less
    Figures & Tables(13)
    Rice multi-spectral sample data set
    Sample enhancement and extension methods
    Technology roadmap
    DeepLab-V3+ network structure[18]
    Sample error area
    Different rice situation on sides of the road
    Comparison of semantic segmentation network results
    Comparison of model extraction effect between V2.0 (blue range line) and V4.0 (green range line)
    • Table 1. Statistical table of sample image information

      View table
      View in Article

      Table 1. Statistical table of sample image information

      地区影像类型影像分辨率影像数量影像时间图斑个数
      海口市美兰区吉林一号2.92202210162 258
      北京二号3.2220220828、20220901499
      WorldView 2212023050522
      海口市琼山区吉林一号2、2.9、3.2920221012、20220827、20220408、20221016、20221012、202209204 706
      北京二号3.2420220901、202208282 497
      WorldView 22220230505553
      高景一号2120230324171
      海口市秀英区吉林一号2.93202210122 144
      儋州市吉林一号2.910202210116 593
      三亚市天涯区吉林一号2.9120220917771
    • Table 2. Confusion matrix

      View table
      View in Article

      Table 2. Confusion matrix

      混淆矩阵真实值
      水稻非水稻
      预测值水稻TPFP
      非水稻FNTN
    • Table 3. Comparison of semantic segmentation network accuracy

      View table
      View in Article

      Table 3. Comparison of semantic segmentation network accuracy

      指标方法切片1切片2切片3平均值
      精确度Unet0.9650.9520.9210.946
      SegNet0.9330.9540.9410.935
      PSPNet0.9100.9160.8870.895
      DeepLabV3+0.9330.9210.9480.938
      精准率Unet0.9880.9700.9620.972
      SegNet0.9320.9330.9150.925
      PSPNet0.8810.8260.8660.854
      DeepLabV3+0.9420.9440.9260.931
      召回度Unet0.8770.8710.8540.869
      SegNet0.9660.9430.9610.952
      PSPNet0.8960.9170.8750.902
      DeepLabV3+0.9220.9010.8870.912
      F1 scoreUnet0.8630.9180.8930.901
      SegNet0.8920.8610.8970.888
      PSPNet0.8110.8260.8090.821
      DeepLabV3+0.9230.9510.9640.941
      IoUUnet0.8590.8710.8550.863
      SegNet0.7960.8100.8060.803
      PSPNet0.7430.7390.7210.732
      DeepLabV3+0.9020.8970.8910.895
    • Table 4. Iterative training parameters of rice interpretation model

      View table
      View in Article

      Table 4. Iterative training parameters of rice interpretation model

      模型版本水稻图斑数量样本切片数量批大小学习率训练轮数测试集比例模型精度
      V1.018 0002 721120.000 15010%61%
      V2.018 0002 721120.000 0510010%75%
      V3.018 0002 721120.000 0520010%74%
      V4.020 1703 301120.000 120010%87%
    • Table 5. Statistics of rice planting area extraction results

      View table
      View in Article

      Table 5. Statistics of rice planting area extraction results

      指标红旗镇三门坡镇云龙镇平均值
      准确率0.840.8030.8130.819
      精确率0.8210.8070.790.806
      召回率0.8770.8710.8540.867
      F1 得分0.7830.8510.8430.826
      平均交并比0.8590.8210.8550.845
    Tools

    Get Citation

    Copy Citation Text

    Chunxiao WANG, Zengzhao XING, Jinsha LU, Fei CAO, Jianxin SUN, Xiaojing CAI, Xiaojuan LIU, Xiaoqing XIONG. Research on Remote Sensing Intelligent Extraction Method of Tropical Rice Planting Area based on Deep Learning: A Case Study of Haikou City, Hainan Province[J]. Remote Sensing Technology and Application, 2024, 39(5): 1106

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 4, 2024

    Accepted: --

    Published Online: Jan. 7, 2025

    The Author Email:

    DOI:10.11873/j.issn.1004-0323.2024.5.1106

    Topics